ENLARGEMENT, SIMILARITY \& CONGRUENCE

Key Concept

Properties of similar shapes:

- The corresponding angles will be the same if shapes are similar.
- Corresponding edges must remain in proportion.

sparx

U110, U630 M139

Key Words

Transformation: This means something about the shape has 'changed'. Reflection: A shape has been flipped.
Rotation: A shape has been turned.
Tratplatipnivww.birle Equatemeht plopadge iosigigarsister--1ferergraph smaller.
Congruent: These shapes are the same shape and same size but can be in any orientation.
Similar: Two shapes are mathematically similar if one is an enlargement of the other.

Tip

To find the centre of enlargement connect the corresponding vertices.

Examples

Enlarge shape A, scale factor 2, centre (0,0).

Scale factor 2 -

Double the distance between each vertex and the centre of enlargement.

Questions

1) A triangle has lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . What will they be if enlarged scale factor 3 .
2) Rectangle A measures 3 cm by 5 cm , B measures 15 cm by 25 cm . What is the scale factor of enlargement?

TRANSLATION AND ENLARGEMENT

Key Concepts

A translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:

Positive-Right
$\binom{\boldsymbol{x}}{\boldsymbol{y}}^{\boldsymbol{\pi}} \begin{aligned} & \text { Negative - Left } \\ & \\ & \\ & \\ & \text { Positive-Up } \\ & \text { Negative - Down }\end{aligned}$

An enlargement changes the size of an image using a scale factor from a given point.

Examples

Translate shape A by $\binom{-3}{-2}$. Label it B

Enlarge shape A by scale factor 2 from point P.

Enlarge shape A by scale factor $\frac{1}{2}$ from point P.

Key Words

Translation
Enlargement
Scale factor Centre

Positive
Negative

Describe the single transformation you see on each coordinate grid from A to B :

DIVIDING AN AMOUNT INTO RATIOS

Key Concepts

An amount can be divided into a given ratio.

Red: Green
1:3

For every 1 red there are 3 greens.
A ratio can be converted into fractions.

Red : Green
1:3
$\frac{1}{4}$ are red and $\frac{3}{4}$ are green.

A woman has $£ 400$. She is going to split her money between her two children in the ratio 2:3. How much does each child receive?

Child 1 receives $£ 160$ and Child 2 receives £240.

There are boys and girls at a party in the ratio 5:2.
There are 15 more boys than girls.
Calculate the number of people at the party.

Examples

Key Words
Ratio
Divide Parts

1) Ann made some cakes. She made vanilla cakes and chocolate cakes in the ratio 2:9. What fraction of the cakes were chocolate?
2) Share $£ 25$ in the ratio $7: 3$
3) Katy and Becky share some money in the ratio 2:1. Katy receives $£ 10$ more than Becky. How much do they each receive?
4) Claire and John share some money in the ratio $3: 2$. Claire receives $£ 18$. How much does John receive?

RATIO AND DIRECT PROPORTION

Key Concepts

To calculate the value for a single item we can use the unitary method.

When working with best value in monetary terms we use:
Price per unit $=\frac{\text { price }}{\text { quantity }}$
In recipe terms we use:
Weight per unit $=\frac{\text { weight }}{\text { quantity }}$

If 20 apples weigh 600 g . How much would 28 apples weigh?
$600 \div 20=30 \mathrm{~g} \longrightarrow$ weight of 1 apple
$30 \times 28=840 \mathrm{~g}$
Box A has 8 fish fingers costing $£ 1.40$.
Box B has 20 fish fingers costing $£ 3.40$.
Which box is the better value?

$$
\begin{aligned}
A=\frac{£ 1.40}{8} & B=\frac{£ 3.40}{20} \\
=£ 0.175 & =£ 0.17
\end{aligned}
$$

Therefore Box B is better value as each fish finger costs less.

Examples

Ingredients for 10 Flapjacks
80 g rolled oats
60 g butter
$30 \mathrm{~m} /$ golden syrup
36 g light brown sugar

The recipe shows the ingredients needed to make 10 Flapjacks.
How much of each will be needed to make 25 flapjacks?

Method 1: Unitary

Method 1: Unitary	$30 \div 10=3$
$80 \div 10=8$	$3 \times 25=\mathbf{7 5 g}$
$8 \times 25=\mathbf{2 0 0 g}$	$36 \div 10=3.6$
	$3.6 \times 25=90 \mathrm{~g}$
$60 \div 10=6$	$30 \div 2=15$
$6 \times 25=150 \mathrm{~g}$	$15 \times 5=75 \mathrm{~g}$
Method $2: 5$ flapjacks	
$80 \div 2=40$	$36 \div 2=18$
$40 \times 5=\mathbf{2 0 0 g}$	$18 \times 5=90 \mathrm{~g}$

2) Packet A has 10 toilet rolls costing $£ 3.50$. Packet B has 12 toilet rolls costing $£ 3.60$. Which is better value for money?
3) If 15 oranges weigh 300 g . What will 25 oranges weigh?

APPLIED GRAPHS

Gradient - The extra cost incurred for every extra hour. y-intercept - The minimum payment to the plumber.

sparx

M932, M658 M843, M771

Key Words
Conversion graph: A graph which converts between two variables.
Intercept: Where two graphs cross.
y-intercept: Where a graph crosses the y axis.
Gradient: The rate of change of one variable with respect to another. This can be seen by the steepness. Simultaneous: At the same time.

Tip
The solution to two linear equations with two unknowns is the coordinates of the intercept (where they cross).

Examples

What is the minimum taxi fair? $£ 2$, this is the y intercept.

What is the charge per mile? 50p, every extra mile adds on 50p.

How much would a journey of 5 miles cost? $£ 4.50$, See line drawn up from 5 miles to the graph, then drawn across to find the cost.

Questions

1) For the graph above a) A journey is 8 miles, what is its cost?
b) A journey cost just $£ 3$, how far was the journey?
2) Draw a graph to show the exchange rate $£ 1=\$ 1.4$.

COMPOUND MEASURES

Key Concepts

A car is travelling at a speed of 35 mph and is scheduled to travel
227.5 miles. How long will this take in hours and minutes?

Time $=\frac{\text { distance }}{\text { speed }}$
Time $=\frac{227.5}{35}=6.5$ hours $=6$ hours 30 minutes

A $5 \mathrm{~m}^{3}$ box has a density of $200 \mathrm{~g} / \mathrm{m}^{3}$. What is the mass of the box? Mass $=$ Density \times Volume
Mass $=200 \times 5=1000 \mathrm{~g}$

Examples

10 N of force are applied to a block with area $4 \mathrm{~m}^{2}$. Calculate the pressure.

$$
\begin{aligned}
& \text { Pressure }=\frac{\text { force }}{\text { area }} \\
& \text { Pressure }=\frac{10}{4}=2.5 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

> 1) A block exerts a force of 120 Newtons on the ground. The block has an area of $2 \mathrm{~m}^{2}$. Work out the pressure on the ground.
> 2) A piece of gold has a mass of 760 grams and a volume of $40 \mathrm{~cm}^{3}$.
> Work out the density of the piece of gold.
3) Dani leaves her house at 0800 . She drives 63 miles to work. She drives at an average speed of 27 miles per hour. At what time does Dani arrive at work?

Key Words

Speed Distance Time Pressure Force Area Density Mass Volume

CONVERSION OF METRIC UNITS

Key Concept

Metric units of length:
$\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$
Metric units of weight: $g, k g$

Metric units of capacity: $\mathrm{ml}, 1$

All of these units are metric units. They will always use conversions of multiples of 10 , eg.10, 100, 1000 etc.

Converting areas

Converting volumes

Examples

$$
\text { Volume }=1 \mathrm{~m}^{3} \quad \text { Volume }=1000000 \mathrm{~cm}^{3}
$$

$\times 100^{3}$
sparx
M487

Convert each of the following:
a) 12 cm into mm
b) 1783 g into kg
c) 2.5 litres into ml
d) 6.8 m into mm
e) $5000000 \mathrm{~cm}^{3}$ into m^{3}
f) $2 \mathrm{~m}^{2}$ into cm^{2}

KINEMATIC FORMULAE AND CONVERSION OF UNITS

Key Concepts

a is constant acceleration
u is initial velocity
v is final velocity
s is displacement from the position when the time $=0$

$$
v=u+a t
$$

Velocity is speed in a given direction.

$$
s=u t+\frac{1}{2} a t^{2}
$$

Initial velocity is speed in a given direction at the start of the motion.

$$
v^{2}=u^{2}+2 a s
$$

Acceleration is the rate of change of velocity
i.e. how the speed changes with time

Key Words
Acceleration Velocity Speed Time Units

Examples

Write 72 mph in m / s.
72 mph
$\times 1.6$
$115.2 \mathrm{~km} / \mathrm{h}$
$\times 1000$
$115200 \mathrm{~m} / \mathrm{h}$
$\div 60$
1920m/min
$\div 60$
$32 \mathrm{~m} / \mathrm{sec}$

1) Use 5 miles $=8 \mathrm{~km}$ to write 60 mph in km / h
2) Write $60 \mathrm{~km} / \mathrm{h}$ in m / s
3) Write $6 \mathrm{~m} / \mathrm{s}$ in mph
