INTRODUCING PROBABILITY

FURTHER PROBABILITY

THEORETICAL PROBABILITY

Key Concepts

Probabilities can be described using words and numerically.

We can use fractions, decimals or percentages to represent a probability.

Theoretical probability is what should happen if all variables were fair.

All probabilities must add to 1.

The probability of something NOT happening equals:

1 - (probability of it happening)

Probability scale: Examples

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	3	5	2

1) What is the probability that a blue counter is chosen? $\quad \frac{3}{19}=\frac{\text { number of blue }}{\text { total number of counters }}$
2) What is the probability that red is not chosen?

$$
\frac{10}{19}=\frac{\text { number of all other colours }}{\text { total number of counters }}
$$

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$
$=11$
Probability of choosing black $=\frac{11}{100}$

sparx

Key Words
Theoretical
Probability Fraction Decimal

Percentage
Certain
Impossible
Even chance

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	5	4	9

1a) Calculate the probability of choosing a 2 .
b) Calculate the probability of not choosing a 3 .

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

2) Calculate the probability of choosing a 2 or a 3.

RELATIVE FREQUENCY

Key Concepts

Experimental probability differs to theoretical probability in that it is based upon the outcomes from experiments. It may not reflect the outcomes we expect.

Experimental probability is also known as the relative frequency of an event occurring.

Estimating the number of times an event will occur:

Probability \times no. of trials

Examples

Colour	red	blue	white	black
Prob	x	0.2	0.3	x

A spinner is spun, it has four colours on it.
The relative frequencies of each colour are recorded.
The relative frequency of red and black are the same.
a) What is the relative frequency of red?

$$
\begin{gathered}
1-(0.2+0.3)=0.5 \\
x=\frac{0.5}{2}=0.25
\end{gathered}
$$

b) If the spinner is spun 300 times, how many times do you expect it to land on white?

$$
0.3 \times 300=90
$$

Key Words
Experimental Relative frequency
Fraction
Decimal
Probability

A spinner is spun which has $1,2,3,4$ on
it. The probability that a 1 and a 4 are spun are equal.
a) What is the probability that a 4 is landed on?
b) If the spinner is spun 500 times how many times do we expect it to land on a 2 ?

PROBABILITY TREE DIAGRAMS

PLOTTING AND INTERPRETTING GRAPHS

QUADRATIC GRAPHS

Key Concepts

A quadratic graph will always be in the shape of a parabola.

$$
y=x^{2}
$$

$$
y=-x^{2}
$$

The roots of a quadratic graph are where the graph crosses the x axis. The roots are the solutions to the equation.

Examples

$$
y=x^{2}+2 x-8
$$

A quadratic equation can be solved from its graph.
The roots of the graph tell us the possible solutions for the equation. There can be 1 root, 2 roots or no roots for a quadratic equation. This is dependant on how many times the graph crosses the x axis.
Roots $x=-4$
$x=2$
Turning point $\quad y$ intercept $=-8$
$(-1,-9)$
sparx
U989
U667
U769

Identify from the graph of $y=x^{2}+4 x+3$:

1) The line of symmetry
2) The turning point
3) The y intercept
4) The two roots of the equation

Turning point Line of symmetry

Key Words
Quadratic Roots Intercept

TYPES OF GRAPH

Examples

Linear graphs
$y=x$

Quadratic graphs
$y=x^{2}$

Cubic graphs $y=x^{3}$

Reciprocal graphs

$$
y=\frac{1}{x}
$$

sparx
4980
U593

Key Words
Quadratic Cubic
Reciprocal Linear Graph

Match the graph with the correct equation:

1) $y=2 x$

$\frac{\text { d) }}{\square /}$
2) $y=\frac{1}{x}$
3) $y=x^{3}-2$
4) $y=x^{2}+1$

SIMULTANEOUS EQUATIONS

Key Concepts

Simultaneous equations are when more than one equation are given, which involve more than one variable. The variables have the same value in each equation.

Example

We need to make the y coefficients the same

$$
\begin{aligned}
& \begin{aligned}
3 x+2 y & =18 \\
3 x-y & =9 \\
3 x+2 y & =18 \\
6 x-2 y & =18 \\
\hline 9 x & =36 \\
x & =4
\end{aligned}+\begin{array}{l}
\text { Sss-Same Sign Subtract } \\
\text { DSA - Different Sign Add }
\end{array} \\
& \hline x
\end{aligned}
$$

Substitute $x=4$ into an original equation:

$$
\begin{aligned}
3 x+2 y & =18 \\
(3 \times 4)+2 y & =18 \\
12+2 y & =18 \\
2 y & =6 \\
y & =3
\end{aligned}
$$

Check in the other equation:

$$
\begin{array}{r}
(3 \times 4)-3=9 \\
12-3=9
\end{array}
$$

This is true therefore $x=4$ and $y=3$
sparx
U760, U757, U137

Key Words
Simultaneous
Substitution Elimination Linear

Solve each set of simultaneous equations:

1) $3 x+2 y=36$
$5 x+4 y=64$
2) $3 x+2 y=4$
$4 x+5 y=17$

INEQUALITIES

Key Concepts

Inequalities show the range of numbers that satisfy a rule.
$x<2$ means x is less than 2
$x \leq 2$ means x is less than or equal to 2
$x>2$ means x is greater
than 2
$x \geq 2$ means x is greater
than or equal to 2
On a number line we use circles to highlight the key values:
is used for less/greater than is used for less/greater than or equal to

Examples

a) State the values of n that satisfy:

$$
-2<n<3
$$

Cannot be equal to 2 Can be equal to 3

$$
-1,0,1,2,3
$$

b) Show this inequality on a number line:

Solve this inequality and represent your answer on a number line:

Solve this inequality and represent your answer on a number line:

M384
M118
M732

Key Words
Inequality
Greater than
Less than
Represent
Number line

1) State the values of n that satisfy: $\quad-3 \leq n<2$
2) Solve $4 x-2 \leq 6$ and represent your answer on a number line
3) Solve $5<2 x+3 \leq 9$ and represent your answer on a number line
