PROPERTIES OF SHAPES

Key Concepts

Lines of symmetry

The number of lines that cut an image in half such that each half of the figure is the mirror image of the other half．

Order of rotation

The number of times a figure fits into itself in one complete rotation of 360 degrees．

Congruent shapes

Images that are identical to one another．They can be flipped or rotated，not enlarged．

Examples

This regular polygon has
5 lines of symmetry

Order of rotation

order 2

order 3

Regular shapes have equal lengths of sides and equal angles．

Key Words
Rotation
Symmetry
Congruent Regular Irregular

1）How many lines of symmetry does shape B have？
2）What is the order of rotation of shape E ？
3）Which shape is congruent to shape A ？
4）Which shape is regular？

Questions

TYPES OF ANGLE AND ANGLES IN POLYGONS

Key Concepts

Regular polygons have equal lengths of sides and equal angles．

Angles in polygons

Sum of interior angles
$=($ number of sides -2$) \times 180$
Exterior angles of regular
polygons $=\frac{360}{\text { number of sides }}$

Types of angle

There are four types which need to be identified－acute， obtuse，reflex and right angled．

Examples Regular Pentagon

Acute is less than 90°

Obtuse is between 90° and 180°

Right angled is 90°
$=540^{\circ}$
Reflex is between 180° and 360°

$$
\text { Interior angle }=\frac{540}{5}=108^{\circ}
$$

Questions

Key Words Polygon Interior angle Exterior angle Acute Obtuse Right angle Reflex

1）Calculate the sum of the interior angles for this regular shape．
2）Calculate the exterior angle for this regular shape．
3）Calculate the size of one interior angle in this regular shape．

ANGLE FACTS INCLUDING ON PARALLEL LINES

Key Concepts

Angles in a triangle equal $18 \mathbf{0}^{\circ}$.
Angles in a quadrilateral equal 360°.
Vertically opposite angles are equal in size.
Angles on a straight line equal 180°.
Base angles in an isosceles triangle are equal.

Alternate angles are equal in size.
Corresponding angles are equal in size.
Allied/co-interior angles are equal 180°.

$$
b=(180-116) \div 2
$$

$$
b=32^{\circ}
$$

$$
?=360-(65+110+87)
$$

$$
?=98^{\circ}
$$

Questions
Calculate the missing angle:
a)

b)

c)

Key Words Angle Vertically opposite Straight line Alternate
Corresponding Allied Co-interior

CONSTRUCTIONS

Key Concept

Line Bisector

Angle Bisector

sparx

M253,U820

Key Words

Construction: To draw a shape, line or angle accurately using a compass and ruler.
Loci: Set of points with the same rule.
Parallel: Two lines which never intersect.
Perpendicular: Two lines that intersect at 90°.
Bisect: Divide into two parts.
Equidistant: Equal distance.

Tip
Watch for scales.
For a scale of:
$1 \mathrm{~cm}=4 \mathrm{~km}$.
$20 \mathrm{~km}=5 \mathrm{~cm}$
$6 \mathrm{~cm}=24 \mathrm{~km}$

Examples

Shade the region that is:

- closer to A than B

Line bisector of A and B

- less than 4 cm from C

Questions

1) Draw these angles then bisect them using constructions:
a) 46°
b) 18°
c) 124°
2) Draw these lines and bisect them:
a) 6 cm
b) 12 cm

Circle with radius 4 cm

CONSTRUCTIONS

Examples

Bisect the distance between two points.

1) Open your compasses past halfway between the two points and draw an arc.

2) Keep your compasses at the same width and repeat from the other point.

3) Draw a line joining the two points where the arcs cross

Bisect an angle.

1) Open your compasses and draw an arc over both lines from the angle

2) Keep your compasses at the same width and draw two further arcs with the point of your compasses at the intersections.

3) Draw a line joining the two points where the arcs cross and the angle point

M239 M232

Key Words
Compass Bisect Angle Arc

Try and recreate the above two constructions on paper using a pair of compasses and a pencil and ruler.

AREA AND PERIMETER OF BASIC SHAPES

Key Concepts

The area of a 2D shape is the space inside it. It is measured in units squared e.g. cm^{2}

The perimeter of a shape is the distance around the edge of the shape. Units of length are used to measure perimeter e.g. $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$

A compound shape is a shape made up of others joined together.

sparx

M635, M690, M900, M269, M390, M635, M610, M996

PERIMETER AND CIRCUMFERENCE

Key Concepts

Parts of a circle

Circumference

 of a circle is calculated by πd and is the distanceCalculate:
a) Circumference

$\mathrm{C}=\pi \times 4$
$=4 \pi$
or $=12.57 \mathrm{~cm}$
b) Diameter when the circumference is 20 cm

$$
\begin{aligned}
\mathrm{C} & =\pi \times d \\
20 & =\pi \times d \\
\frac{20}{\pi} & =d
\end{aligned}
$$

$$
\text { Or } 6.37 \mathrm{~cm}
$$

Examples

c) Perimeter

$$
\begin{aligned}
& P=\frac{\pi \times d}{2}+d \\
& P=\frac{\pi \times 6}{2}+6 \\
& P=3 \pi+6 \\
& \text { Or }=15.42 \mathrm{~cm}
\end{aligned}
$$

d) Arc length

Arc $=\frac{\theta}{360} \times \pi \times d$

Arc $=\frac{28}{360} \times \pi \times 2 \times 10$
Arc $=\frac{28}{360} \times \pi \times 20$
Arc $=\frac{14}{9} \pi$
Or $=4.89 \mathrm{~cm}$

Arc length of a sector is calculated by $\frac{\theta}{360} \pi d$.

sparx
Key Words Circle Perimeter
Circumference
Radius
U604 U950 U221
Diameter

Arc

Calculate:

1) The circumference of a circle with a diameter of 12 cm
2) The diameter of a circle with a circumference of 30 cm
3) The perimeter of a semicircle with diameter 15 cm
4) The arc length of the diagram

AREA OF CIRCLES AND PART CIRCLES

Key Concepts

The area of a circle is calculated by πr^{2}

The area of a sector is calculated by $\frac{\theta}{360} \pi r^{2}$

Calculate:
a) Area

$$
\begin{aligned}
\mathrm{A} & =\pi \times 3^{2} \\
& =9 \pi \\
\text { or } & =28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Radius when the area is $20 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\mathrm{A} & =\pi \times r^{2} \\
20 & =\pi \times r^{2} \quad \sqrt{\frac{20}{\pi}}=r \\
\frac{20}{\pi} & =r^{2} \quad \text { Or } 2.52 \mathrm{~cm}
\end{aligned}
$$

Examples

c) Area

$P=\frac{\pi \times r^{2}}{2}$
$P=\frac{\pi \times 6^{2}}{2}$
$P=18 \pi$
Or $=56.55 \mathrm{~cm}^{2}$
d) Area of a sector

Arc $=\frac{\theta}{360} \times \pi \times r^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 10^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 100$
Arc $=\frac{70}{9} \pi$
Or $=24.43 \mathrm{~cm}$

Key Words

Circle

Calculate:

1) The area of a circle with a radius of 9 cm
2) The radius of a circle with an area of $45 \mathrm{~cm}^{2}$
3) The area of a semicircle with diameter of 16 cm
4) The area of the sector in the diagram

Radius
Diameter

REFLECTION, ROTATION AND TRANSLATION

Key Concepts

A reflection creates a mirror image of a shape on a coordinate graph. The mirror line is given by an equation eg. $y=2, x=2, y=x$. The shape does not change in size.
A rotation turns a shape on a coordinate grid from a given point. The shape does not change size but does change orientation. A translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:

Positive-Right
Negative - Left
Positive-Up
Negative - Down
mage of a shape on a coordinate graph. The mirror line is given by an equation eg. $y=2, x=2, y=x$. The size.

U134, U196, U696, U799

Reflect shape A in the line
$x=1$. Label it B .

Examples

Rotate shape B from the point (-1, -2)

Translate shape A by $\binom{-3}{-2}$. Label it B

Key Words Rotate Clockwise Anticlockwise Centre Degrees Reflect Mirror image Translate

Describe the single transformation vou see on each coordinate grid from A to B :

$\binom{t}{\mathrm{~g}}$ ио!ңе|sueגz (p

