UNDERSTANDING PERCENTAGES and FRACTIONS

FRACTIONS \& PERCENTAGES AS OPERATORS

FRACTIONS, DECIMALS AND PERCENTAGES

FRACTIONS

PERCENTAGES

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Calculating percentages of an amount with a calculator:

Amount \times percentage as a decimal

Calculating percentage increase/decrease:

Amount $\times(1 \pm$ percentage as a decimal)

Calculating a percentage - non calculator:

Calculate 32\% of 500g:

$10 \% \rightarrow 500 \div 10=50$	
$30 \% \rightarrow 50 \times 3=150$	32\% = $150+10$
$1 \% \rightarrow 500 \div 100=5$	$=160 \mathrm{~g}$
$2 \% \rightarrow 5 \times 2=10$	

Calculating a percentage - calculator:

Calculate 32% of 500 g :

Value \times (percentage $\div 100)$
$=500 \times 0.32$
$=160 \mathrm{~g}$

Examples

A dress is reduced in price by 35% from $£ 80$. What is it's new price?

Value $\times(1-$ percentage as a decimal $)$
$=80 \times(1-0.35)$
= $£ 52$

A house price appreciates by 8% in a year. It originally costs $£ 120,000$, what is the new value of the house?

Value $\times(1+$ percentage as a decimal $)$
$=120,000 \times(1+0.08)$
= $£ 129,600$

Key Words
Percent Increase/decrease Appreciate Depreciate Multiplier Divide

1) Write the following as a decimal multiplier: a) 45% b) 3% c) 2.7%
2) Calculate 43% of 600 without using a calculator
3) Calculate 72% of 450 using a calculator

4a) Decrease $£ 500$ by 6%
b) Increase 65 g by 24%
c) Increase 70 m by 8.5%

PERCENTAGES AND INTEREST

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Per annum is often used in

 monetary questions meaning per year.Depreciation means that the value of something is going down or reducing.

Examples

Simple interest:

Joe invest $£ 400$ into a bank account that pays 3% simple interest per annum.
Calculate how much money will be in the bank account after 4 years.
$3 \%=£ 4 \times 3$
$=£ 12$
4 years $=£ 12 \times 4$
Interest $=£ 48$
Total in bank account $=£ 400+£ 48$

$$
=£ 448
$$

Compound interest:

Joe invest $£ 400$ into a bank account that pays 3\% compound interest per annum.
Calculate how much money will be in the bank account after 4 years.

Value $\times(1 \pm \text { percentage as a decimal })^{\text {years }}$
$=400 \times(1+0.03)^{4}$
$=400 \times(1.03)^{4}$
$=£ 450.20$
sparx
M901

Key Words
Percent
Depreciate Interest Annum Simple Compound Multiplier

1) Calculate a) 32% of 48 b) 18% of 26
2) Kane invests $£ 350$ into a bank account that pays out simple interest of 6%. How much will be in the bank account after 3 years?
3) Jane invests $£ 670$ into a bank account that pays out 4\% compound interest per annum. How much will be in the bank account after 2 years?

STANDARD FORM

Key Concepts

We use standard form to write a very large or a very small number in scientific form.

Must be $\times 10$ b is an integer $a \times 10^{b}$

Must be $1 \leq a<10$

Write the following in standard form:

1) $3000=3 \times 10^{3}$
2) $4580000=4.58 \times 10^{6}$
3) $0.0006=6 \times 10^{-4}$
4) $0.00845=8.45 \times 10^{-3}$

Examples

Calculate the following, write your answer in standard form:

1) $\left(3 \times 10^{3}\right) \times\left(5 \times 10^{2}\right)$

$$
\left.\begin{array}{l}
3 \times 5=15 \\
10^{3} \times 10^{2}=10^{5}
\end{array}\right\} \quad \begin{gathered}
15 \times 10^{5} \\
=1.5 \times 10^{6}
\end{gathered}
$$

2) $\left(8 \times 10^{7}\right) \div\left(16 \times 10^{3}\right)$

sparx
M719
M678
M757

Key Words
Standard form
Base 10

Links
Science
A) Write the following in standard form:
$\begin{array}{llll}\text { 1) } \quad 74000 & \text { 2) } 1042000 & \text { 3) } 0.009 & \text { 4) } 0.00000124\end{array}$
B) Work out:

1) $\left(5 \times 10^{2}\right) \times\left(2 \times 10^{5}\right) \quad$ 2) $\left(4 \times 10^{3}\right) \times\left(3 \times 10^{8}\right)$
2) $\left(8 \times 10^{6}\right) \div\left(2 \times 10^{5}\right) \quad$ 4) $\left(4.8 \times 10^{2}\right) \div\left(3 \times 10^{4}\right)$
