## POWERS AND ROOTS

$$
2 \times 2=4
$$

$$
\begin{gathered}
2^{3} \\
2 \times 2 \times 2
\end{gathered}
$$

$$
2 \times 2 \times 2
$$



## Key Words

Square: A square
number is the result of multiplying a number by itself.
Cube: A cube number is the result of multiplying a number by itself twice.
Root: A root is the
reverse of a power.
Prime number: A prime
is a number that has
only two factors which
are 1 and itself.
Reciprocal: This is
found by doing 1 divided by the number.
Factor: A number that fits into another number exactly.

## Tip

M823,M322 M108 amount of factors must be a square number.

## Examples

What is $2^{4}$ ?
What is $\sqrt{64}$ ?
What is the reciprocal of 5 ?

$$
8^{2}=64, \text { so } \sqrt{64}= \pm 8
$$

Write 36 as a product of prime factors

$$
\int_{2}^{36} 36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}
$$

Questions

1) a) $2^{5}$
b) $3^{3}$
c) $1^{17}$
d) $\sqrt{81}$
e) $\sqrt{16}$
f) $\sqrt[3]{64}$
2) Find the reciprocal of:
a) 4
b) $\frac{1}{3}$
c) 0.25
3) Write 72 as a product of primes.

## INDICES AND ROOTS

## Key Concepts

$$
\begin{gathered}
a^{m} \times a^{n}=a^{m+n} \\
a^{m} \div a^{n}=a^{m-n} \\
\left(a^{m}\right)^{n}=a^{m n} \\
a^{\frac{1}{n}}=\sqrt[n]{a} \\
a^{-m}=\frac{1}{a^{m}}
\end{gathered}
$$

## sparx <br> M135, M608, <br> M105, M608, M150

## Examples

Simplify each of the following:

1) $a^{6} \times a^{4}=a^{6+4}$
$=a^{10}$
2) $\begin{aligned}\left(3 a^{4}\right)^{3} & =3^{3} a^{4 \times 3} \\ & =27 a^{12}\end{aligned}$
3) $a^{\frac{1}{2}}=\sqrt{a}$
4) $9^{\frac{1}{2}}=\sqrt{9}$
5) $a^{6} \div a^{4}=a^{6-4}$
6) $\frac{5^{2} \times 5^{6}}{5^{4}}=\frac{5^{8}}{5^{4}}$

$$
=5^{8-4}
$$

$$
=3 \text { or }-3
$$

3) $\left(a^{6}\right)^{4}=a^{6 \times 4}$
$=5^{4}$
4) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$

Simplify:

Key Words
Powers
Roots
Indices Reciprocal

1) $a^{3} \times a^{2}$
2) $b^{4} \times b$
3) $d^{-5} \times d^{-1}$
4) $m^{6} \div m^{2}$
5) $n^{4} \div n^{4}$
6) $\frac{8^{4} \times 8^{5}}{8^{6}}$
7) $\frac{4^{9} \times 4}{4^{3}}$
8) $\left(3^{2}\right)^{5}$
9) $81^{\frac{1}{2}}$
10) $5^{-2}$

## ALGEBRAIC EXPRESSIONS

## Key Concepts

When collecting like terms involving addition or subtraction, add/subtract the numbers in front of the letters.

If the like terms are multiplied, multiply the numbers in front of the letters and put the letters next to each other.

If the like terms are divided, divide the numbers in front of the letters.

## Examples

Simplify the following expressions:

1) $4 p+6 t+p-2 t=5 p+4 t$
2) $3+2 t+p-t+2=5+t+p$
3) $f+3 g-4 f=3 g-3 g$
4) $f^{2}+4 f^{2}-2 f^{2}=3 f^{2}$
5) $6 a \times 3 b \times 2 c=36 a b c$
6) $\frac{9 b}{3}=3 b$

## Questions

## Simplify:

## sparx <br> M813, M795, <br> Key Words <br> Simplify <br> Term <br> Collect

 M531, M9491) $7 p+3 q+p-3 q$

$$
3 p-2 t+7
$$

3) $m-8 g-5 m$ $+2 b^{2}$
4) $2 \mathrm{a} \times 5 \mathrm{~b} \times 4 \mathrm{c}_{\frac{\varepsilon}{7}(8} \quad \mathrm{d} \varepsilon(\angle$,
$3 n \times 2 m$
$36 p$
36 80_-11t-1c $\mathrm{dc}+17+7 \mathrm{~T} 17$
5) $5+4 t+$
6) $b^{2}-7 b^{2}$
7) ${\text { uz } \text { wit }_{8}} 8 \mathrm{~m} \times$ z $97-1$ (t

## EXPAND AND SIMPLIFY BRACKETS

## Key Concepts

## Expanding brackets

Multiply the number outside the brackets with EVERY term inside the brackets

## Factoring expressions

Take the highest common factor outside the bracket．

## Examples

Expand and simplify where appropriate
1）


2）

$+16$

3）Factorise

$$
9 x+18=9(x+2)
$$

4）Factorise

## Questions

Key Words
Expand
Factorise Simplify

1）Expand and simplify
（a） $3(2-7 f)$
（b） $5(m-2)+6$
（c） $3(4+t)+2(5+t)$

2）Factorise
（a） $6 m+12 t$
（b） $9 t-3 p$
（c） $4 d^{2}-$

2d

## SIMPLIFYING \& MANIPULATING ALGEBRA



## SOLVING EQUATIONS



## SEQUENCES

## Key Concept

Types of Sequence
Sequence as pictures:


Linear sequence:
$4,7,10,13,16, \ldots$


Fibonacci sequence: (add the previous two terms)
$1,1,2,3,5,8, \ldots$

## Key Words

Sequence: A list which is in a particular order following a pattern. Term: Each particular part of a sequence. Linear sequence: A sequence which is formed by adding or subtracting the same amount each time.

## Examples



Next pattern is:


Sequence $=4,7,10,13, \ldots$.
Term to term rule $=+3$
Nth term


Tip

If a sequence is decreasing, the ' $n$ ' term will be negative.

Eg, 15, 11, 7, 3, .
Nth term $=-4 n+19$

## Questions

1) Find the next two terms and the term to term rule a) $9,13,17,21, \ldots$ b) $7,12,17,22, \ldots$ c) $9,7,5,3, \ldots$ d) $3,4,7,11,18$
2) Find the nth term
a) $7,9,11,13, \ldots$
b) $8,13,18,23$,.
c) $15,12,9,6, \ldots$
d) $1,-3,-7,-11, \ldots$
[^0]
[^0]:    
    

