REFLECTION AND ROTATION

Key Concepts

A reflection creates a mirror image of a shape on a coordinate graph.
The mirror line is given by an equation eg. $y=2, x=2, y=$ x. The shape does not change in size.

A rotation turns a shape on a coordinate grid from a given point. The shape does not change size but does change orientation.

Clockwise

Anticlockwise

Examples

Reflect shape A in the line $x=1$. Label it B .

Reflect shape A in the line $y=x$. Label it B.

Rotate shape B from the point (-1, -2)

Key Words Rotate Clockwise Anticlockwise Centre Degrees
Reflect
Mirror image

Describe the single transformation vou see on each coordinate grid from A to B :

TRANSLATION AND ENLARGEMENT

Key Concepts

A translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:

Positive-Right
$\binom{\boldsymbol{x}}{\boldsymbol{y}}^{\boldsymbol{\pi}} \begin{aligned} & \text { Negative - Left } \\ & \\ & \\ & \\ & \text { Positive-Up } \\ & \text { Negative - Down }\end{aligned}$

An enlargement changes the size of an image using a scale factor from a given point.

Examples

Translate shape A by $\binom{-3}{-2}$. Label it B

Enlarge shape A by scale factor 2 from point P.

Enlarge shape A by scale factor $\frac{1}{2}$ from point P.

Key Words

Translation
Enlargement
Scale factor Centre

Positive
Negative

Describe the single transformation you see on each coordinate grid from A to B :

CONSTRUCTIONS AND LOCI

Key Concepts
 Line bisector

Angle bisector

sparx
U187, U245, U787, U979, U820

Examples

There are two burglar alarm sensors, one at A and one at B .

The range of each sensor is 4 m .

The alarm is switched on.
Is it possible to walk from the front door to the patio door without setting off the alarm?

PIE CHARTS AND SCATTER-GRAPHS

Key Concepts

Pie charts use angles to represent proportionally the quantity of each group involved.

Pie charts can only be compared to one another when populations are given.

Scatter-graphs show the relationship between two variables. This relationship is called the correlation.

sparx

U508 U172 U854 U199 U277 U128

1) Calculate the angle for each category:

Key Words
Pie chart
Scatter-graph
Correlation
Outlier
Variable

2a) What type of correlation is shown?
b) Using a line of best fit estimate the weight when the height is 135 cm .

THEORETICAL PROBABILITY

Key Concepts

Probabilities can be described using words and numerically.

We can use fractions, decimals or percentages to represent a probability.

Theoretical probability is what should happen if all variables were fair.

All probabilities must add to 1.

The probability of something NOT happening equals:

1 - (probability of it happening)

Probability scale:

Examples

Impossible	Even chance			Certain
Γ	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{4}{4}$
$\frac{0}{4}$	$\frac{1}{4}$		0.75	1
0	0.25	0.5	0.75	
0%	25%	50%	75%	100%

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	3	5	2

1) What is the probability that a blue counter is
chosen? $\quad \frac{3}{19}=\frac{\text { number of blue }}{\text { total number of counters }}$
2) What is the probability that red is not chosen?

$$
\frac{10}{19}=\frac{\text { number of all other colours }}{\text { total number of counters }}
$$

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$

$$
=11
$$

Probability of choosing black $=\frac{11}{100}$

Key Words
Theoretical
Probability
Fraction
Decimal
Percentage Certain
Impossible
Even chance

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	5	4	9

1a) Calculate the probability of choosing a 2.
b) Calculate the probability of not choosing a 3 .

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

2) Calculate the probability of choosing a 2 or a 3.

RELATIVE FREQUENCY

Key Concepts

Experimental probability differs to theoretical probability in that it is based upon the outcomes from experiments. It may not reflect the outcomes we expect.

Experimental probability is also known as the relative frequency of an event occurring.

Estimating the number of times an event will occur:

Probability \times no. of trials

Examples

Colour	red	blue	white	black
Prob	x	0.2	0.3	x

A spinner is spun, it has four colours on it.
The relative frequencies of each colour are recorded.
The relative frequency of red and black are the same.
a) What is the relative frequency of red?

$$
\begin{gathered}
1-(0.2+0.3)=0.5 \\
x=\frac{0.5}{2}=0.25
\end{gathered}
$$

b) If the spinner is spun 300 times, how many times do you expect it to land on white?

$$
0.3 \times 300=90
$$

$\rightarrow \infty$

U166 U580
Key Words
Experimental Relative frequency Fraction Decimal
Probability

A spinner is spun which has $1,2,3,4$ on it. The probability that a 1 and a 4 are spun are equal.
a) What is the probability that a 4 is landed on?
b) If the spinner is spun 500 times how many times do we expect it to land on a 2 ?

ALGEBRAIC PROOF

Examples

Prove:

$$
(n+4)^{2}-(n+2)^{2}
$$

is always a multiple of 4 for all positive integers of n.

$$
(n+4)^{2}-(n+2)^{2}
$$

Expand Expand

$$
\left(n^{2}+8 n+16\right)-\left(n^{2}+4 n+4\right)
$$

Simplify
Simplify

$$
4 n+12
$$

Factorise
Factorise

$$
4(n+3)
$$

Because 4 is a factor of all terms in this expression, then the original expression must always be a multiple of 4 .

Prove that the sum of any three consecutive even numbers is always a multiple of 6:

Term 1: $2 n$
Term 2: $2 n+2$
Term 3: $2 n+4$

$$
2 n+2 n+2+2 n+4
$$

Simplify
Simplify
$6 n+6$
Factorise
Factorise
$6(n+1)$
6 is a factor of all terms therefore the original expression must always be a multiple of 6 .

Prove that the product of two odd numbers is always odd:

Term 1: $2 n+1$
Term 2: $2 n+3$

$$
(2 n+1)(2 n+3)
$$

Expand Expand

$$
4 n^{2}+8 n+3
$$

Factorise
Factorise

This term is even as any This term is odd as 3 is multiple of 4 is even. an odd number.

Even + Odd = Odd number

Key Words

Term
Odd Even
Consecutive
Sum
Product

1) Prove $(n+10)^{2}-(n+2)^{2}$ is always a multiple of 16 .
2) Prove the sum of two consecutive odd numbers is even.
3) Prove the product of two even consecutive numbers is always a multiple of 4 .

$$
\left(u+{ }_{\imath} u\right) \nleftarrow(\varepsilon(z+u z) \tau(乙 \quad(9+u) 9 I(\tau: S \cup \exists M S N \forall
$$

