DIRECT AND INVERSE PROPORTION

Key Concepts

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.

Examples

Direct proportion:

Value of A	32	P	56	20	72
Value of B	20	30	35	R	45

Ratio constant: $20 \div 32=\frac{5}{8}$
From A to B we will multiply by $\frac{5}{8}$.
From B to A we will divide by $\frac{5}{8}$.

$$
P=30 \div \frac{5}{8}=48 \quad R=20 \times \frac{5}{8}=12.5
$$

Inverse proportion:

Key Words
Direct Inverse
Proportion Divide M681

Multiply

Complete each table:

1) Direct proportion

Value of A	5	P	22
Value of B	9	28.8	Q

2) Inverse proportion

Value of A	4	P	18
Value of B	9	3	Q

Constant

$$
\tau=0 ’ 乙 \tau=d(Z 9 \cdot 6 \varepsilon=0 ‘ 9 \tau=d(\tau \text { Sy } \exists M S N \forall
$$

RATIO AND DIRECT PROPORTION

Key Concepts

To calculate the value for a single item we can use the unitary method.

When working with best value in monetary terms we use:
Price per unit $=\frac{\text { price }}{\text { quantity }}$
In recipe terms we use:
Weight per unit $=\frac{\text { weight }}{\text { quantity }}$

If 20 apples weigh 600 g . How much would 28 apples weigh?
$600 \div 20=30 \mathrm{~g} \longrightarrow$ weight of 1 apple
$30 \times 28=840 \mathrm{~g}$
Box A has 8 fish fingers costing $£ 1.40$.
Box B has 20 fish fingers costing $£ 3.40$.
Which box is the better value?

$$
\begin{aligned}
A=\frac{£ 1.40}{8} & B=\frac{£ 3.40}{20} \\
=£ 0.175 & =£ 0.17
\end{aligned}
$$

Therefore Box B is better value as each fish finger costs less.

Examples

Ingredients for 10 Flapjacks
80 g rolled oats
60 g butter
$30 \mathrm{~m} /$ golden syrup
36 g light brown sugar

The recipe shows the ingredients needed to make 10 Flapjacks.
How much of each will be needed to make 25 flapjacks?

Method 1: Unitary

Method 1: Unitary	$30 \div 10=3$
$80 \div 10=8$	$3 \times 25=\mathbf{7 5 g}$
$8 \times 25=\mathbf{2 0 0 g}$	$36 \div 10=3.6$
	$3.6 \times 25=90 \mathrm{~g}$
$60 \div 10=6$	$30 \div 2=15$
$6 \times 25=150 \mathrm{~g}$	$15 \times 5=75 \mathrm{~g}$
Method $2: 5$ flapjacks	
$80 \div 2=40$	$36 \div 2=18$
$40 \times 5=\mathbf{2 0 0 g}$	$18 \times 5=90 \mathrm{~g}$

2) Packet A has 10 toilet rolls costing $£ 3.50$. Packet B has 12 toilet rolls costing $£ 3.60$. Which is better value for money?
3) If 15 oranges weigh 300 g . What will 25 oranges weigh?

COMPOUND MEASURES

Key Concepts

A car is travelling at a speed of 35 mph and is scheduled to travel
227.5 miles. How long will this take in hours and minutes?

Time $=\frac{\text { distance }}{\text { speed }}$
Time $=\frac{227.5}{35}=6.5$ hours $=6$ hours 30 minutes

A $5 \mathrm{~m}^{3}$ box has a density of $200 \mathrm{~g} / \mathrm{m}^{3}$. What is the mass of the box? Mass $=$ Density \times Volume
Mass $=200 \times 5=1000 \mathrm{~g}$

Examples

10 N of force are applied to a block with area $4 \mathrm{~m}^{2}$. Calculate the pressure.

$$
\begin{aligned}
& \text { Pressure }=\frac{\text { force }}{\text { area }} \\
& \text { Pressure }=\frac{10}{4}=2.5 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

> 1) A block exerts a force of 120 Newtons on the ground. The block has an area of $2 \mathrm{~m}^{2}$. Work out the pressure on the ground.
> 2) A piece of gold has a mass of 760 grams and a volume of $40 \mathrm{~cm}^{3}$.
> Work out the density of the piece of gold.
3) Dani leaves her house at 0800 . She drives 63 miles to work. She drives at an average speed of 27 miles per hour. At what time does Dani arrive at work?

Key Words

Speed Distance Time Pressure Force Area Density Mass Volume

ANGLE FACTS INCLUDING ON PARALLEL LINES

Key Concepts

Angles in a triangle equal $18 \mathbf{0}^{\circ}$.
Angles in a quadrilateral equal 360°.
Vertically opposite angles are equal in size.
Angles on a straight line equal 180°.
Base angles in an isosceles triangle are equal.

Alternate angles are equal in size.
Corresponding angles are equal in size.
Allied/co-interior angles are equal 180°.

$$
b=(180-116) \div 2
$$

$$
b=32^{\circ}
$$

$$
?=360-(65+110+87)
$$

$$
?=98^{\circ}
$$

Questions
Calculate the missing angle:
a)

b)

c)

Key Words Angle Vertically opposite Straight line Alternate
Corresponding Allied Co-interior

BEARINGS

Key Concepts

Bearings are a type of angle that are used in real life directional instructions. They have three rules that they must conform to:

1) They must always be measured from North.
2) They must always be measured in a clockwise direction.
3) They must always have 3 figures e.g. 72° is written as 072°

Examples

We don't always need a protractor to find bearings, we can use our angle facts knowledge. $\mathrm{N} \quad$ Because we know cointerior angles sum to 180°, this angle must be 70°.

The bearing of B from A is 075°.
Calculate the bearing of A from B.

CIRCLE THEOREMS

The angle between a radius and a tangent is 90°

The angle at the centre is twice that at the circumference

The angle in a semi circle is 90°

The alternate segment theorem
sparx U251, U459, U130, U489, U808

Try look, cover, write, check to be able to identify and describe each of the 7 circle theorems.

1. Read through the theorems
2. Cover them over
3. Attempt to recreate them on another sheet of paper
4. Check how many you remembered perfectly. Try again until you have all 7.

PYTHAGORAS AND TRIGONOMETRY

Key Concepts

Pythagoras' theorem and basic trigonometry both work with right angled triangles.

Pythagoras' Theorem - used to find a missing length when two sides are known $a^{2}+b^{2}=c^{2}$
c is always the hypotenuse (the longest side)

Basic trigonometry SOHCAHTOA - used to find a missing side or an angle

When finding the missing angle we must press SHIFT on our calculators first.

Pythagoras' Theorem

$a^{2}+b^{2}=c^{2}$
$a^{2}+8^{2}=12^{2}$

$$
\begin{aligned}
a^{2} & =12^{2}-8^{2} \\
a^{2} & =80 \\
a & =\sqrt{80} \\
a & =8.9
\end{aligned}
$$

Examples

$$
x=\sin ^{-1}\left(\frac{8}{10}\right)
$$

$$
x=53.1^{\circ}
$$

$$
\cos 48=\frac{x}{38}
$$

$$
38 \times \cos 48=x
$$

$$
x=25.4 m
$$

sparx M677

Key Words Right angled triangle Hypotenuse Opposite Adjacent Sine Cosine Tangent

Find the value of x.
a)

b)

c)

d)

THE SINE AND COSINE RULE

Key Concepts

Sine rule

To calculate a missing side:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$ To calculate a missing angle:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Cosine rule

To calculate a missing side:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

To calculate a missing angle:

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle using sine
area $=\frac{1}{2} a b \sin C$
sparx
U164

$$
\begin{aligned}
\frac{x}{\sin 35} & =\frac{7}{\sin 42} \\
x & =\frac{\sin 35 \times 7}{\sin 42} \\
x & =6.0 \mathrm{~cm}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& x^{2}=4^{2}+7.5^{2}-2 \times 4 \times 7.5 \times \cos 42 \\
& x^{2}=27.66 \\
& x=\sqrt{27.66}=5.26 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\sin x}{4} & =\frac{\sin 42}{7} \\
\sin x & =\frac{\sin 42 \times 4}{7} \\
x & =\sin ^{-1}\left(\frac{\sin 42 \times 4}{7}\right) \\
x & =22.5^{\circ}
\end{aligned}
$$

Key Words
Sine
Cosine
Side
Angle
Inverse
2D

2a) Calculate x
b) Calculate the area of the triangle

SEQUENCES

Key Concepts

Arithmetic or linear sequences
increase or decrease by a common amount each time.
Geometric series has a common multiple between each term. Quadratic sequences include an n^{2}. It has a common second difference.
Fibonacci sequences are where you add the two previous terms to find the next term.

Linear/arithmetic sequence:

a) State the nth term

$$
\underbrace{3 n+1}_{\text {Difference }} \text { The }^{3 n} 0^{\text {th }} \text { term }
$$

b) What is the $100^{\text {th }}$ term in the sequence?

$$
\begin{gathered}
3 n+1 \\
3 \times 100+1=301
\end{gathered}
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33
\end{gathered}
$$

Yes as 33 is an integer.

Pattern 1 Pattern $2 \quad$ Pattern 3

Examples

Linear sequences with a picture:

State the nth term.

Hint: Firstly write down the number of matchsticks in each image:

$$
7 n+1
$$

$+$| Pattern 1 | Pattern 2 | Pattern 3 |
| :---: | :---: | :---: |
| 8 | 15 | 22 |
| | | |
| -7 | +7 | |

Geometric sequence e.g.

Quadratic sequence e.g. $n^{2}+4$ Find the first 3 numbers in the sequence
First term: $1^{2}+4=5 \quad$ Third term: $3^{2}+4=13$
Second term: $2^{2}+4=8$

sparx

M991, M418, M166, M981

Key Words Linear
Arithmetic
Geometric
Sequence
Nth term

1) $1,8,15,22, \ldots$.
a) Find the nth term
b) Calculate the $50^{\text {th }}$ term
c) Is 120 in the sequence?
2) $n^{2}-5$ Find the first 4 terms in this sequence

DIVIDING AN AMOUNT INTO RATIOS

Key Concepts

An amount can be divided into a given ratio.

Red: Green
1:3

For every 1 red there are 3 greens.
A ratio can be converted into fractions.

Red : Green
1:3
$\frac{1}{4}$ are red and $\frac{3}{4}$ are green.

A woman has $£ 400$. She is going to split her money between her two children in the ratio 2:3. How much does each child receive?

Child 1 receives $£ 160$ and Child 2 receives £240.

There are boys and girls at a party in the ratio 5:2.
There are 15 more boys than girls.
Calculate the number of people at the party.

Examples

Key Words
Ratio
Divide Parts

1) Ann made some cakes. She made vanilla cakes and chocolate cakes in the ratio 2:9. What fraction of the cakes were chocolate?
2) Share $£ 25$ in the ratio $7: 3$
3) Katy and Becky share some money in the ratio 2:1. Katy receives $£ 10$ more than Becky. How much do they each receive?
4) Claire and John share some money in the ratio $3: 2$. Claire receives $£ 18$. How much does John receive?
