1	2											3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He helium 2
7 Li	9 Be			/e atomi								11 B	12 C	14 N	16 O	19 F	20 Ne
lithium 3	beryllium 4			name (proton)) number	r						boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
23 Na	24 Mg					_						27 Al	28 Si	31 P	32 S	35.5 Cl	40 Ar
sodium 11	magnesium 12											aluminium 13	silicon 14	phosphorus 15	^{sulfur} 16	chlorine 17	argon 18
39 K	40 Ca	45 Sc	48 Ti	51 V	52 Cr	55 Mn	56 Fe	59 Co	59 Ni	63.5 Cu	65 Zn	70 Ga	73 Ge	75 As	79 Se	80 Br	84 Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85 Rb	88 Sr	89 Y	91 Zr	93 Nb	96 Mo	[98] Tc	101 Ru	103 Rh	106 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	127 I	131 Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
133 Cs	137 Ba	139 La *	178 Hf	181 Ta	184 W	186 Re	190 Os	192 Ir	195 Pt	197 Au	201 Hg	204 TI	207 Pb	209 Bi	[209] Po	[210] At	[222] Rn
caesium 55	barium 56	lanthanum 57	^{hafnium} 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	^{gold} 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac *	[261] Rf	[262] Db	[266] Sg	[264] Bh	[277] Hs	[268] Mt	[271] Ds	[272] Rg	Eleme			numbers			been
francium 87	radium 88	actinium 89	rutherfordium 104	^{dubnium}	seaborgium 106	^{bohrium} 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111		repor	ted but i	not fully a	authentio	cated	

* The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

quations
er only e
gher Tie
HT = Hi

kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	$E_k = \frac{1}{2} m v^2$
elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = mass \times gravitational field strength \times height	$E_p = m g h$
change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m \ c \ \Delta \theta$
power = energy transferred time	$P = \frac{E}{t}$
power = work done time	$P = \frac{W}{t}$
efficiency = useful output energy transfer total input energy transfer	
efficiency = useful power output total power input	
charge flow = current × time	Q = It
potential difference = current × resistance	V = IR
power = potential difference × current	P = VI
power = (current) ² × resistance	$P = I^2 R$
energy transferred = power × time	E = P t
energy transferred = charge flow × potential difference	E = Q V
density = mass volume	$\frac{A}{m} = d$

	thermal energy for a change of state = mass × specific latent heat	E = m L	
	For gases: pressure × volume = constant	p V = constant	
	weight = mass × gravitational field strength	W= m g	
	work done = force × distance (along the line of action of the force)	$W = F_S$	
	force = spring constant × extension	F = k e	
	moment of a force = force × distance (normal to direction of force)	M = F d	
	pressure = force normal to a surface area of that surface	$p = \frac{F}{A}$	
НТ	pressure due to a column of liquid = height of column × density of liquid × gravitational field strength	$p = h \rho g$	
	distance travelled = speed × time	s = v t	
	acceleration = change in velocity time taken	$a = \frac{\Delta v}{t}$	
	(final velocity) ² – (initial velocity) ² = $2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 \ a \ s$	
	resultant force = mass × acceleration	F = m a	
нт	momentum = mass × velocity	p = m v	
нт	force = change in momentum time taken	$F = \frac{m \Delta v}{\Delta t}$	
	period = 1 frequency	$T = \frac{1}{f}$	
	wave speed = frequency × wavelength	v=f).	
	magnification = image height object height		
НТ	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I I	
НТ	$\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$	
НТ	potential difference across primary coil x current in primary coil = potential difference across secondary coil x current in secondary coil	$V_p I_p = V_s I_s$	

Y11 GCSE Combined Science Topic List: Paper I

Biology Paper I

Cell Biology

- Cell structures
- Cell division
- Diffusion & Osmosis

Organisation

- Cells, tissues & organs
- Digestion & enzymes
- Heart and circulation
- Leaf structure

Infection & Response

- Communicable disease
- Non-communicable disease
- Preventing disease
- Vaccines & antibiotics
- Developing drugs

Bioenergetics

- Photosynthesis
- Respiration

Chemistry Paper I

Atoms & the Periodic Table

- Atomic structure
- Structure of the PT
- Properties of group 1, 7 and 0 elements

Bonding & Structure

- Electron configuration
- Covalent bonding
- Ionic bonding

Chemical Calculations

- Relative molecular formula
- Moles
- Concentrations

Chemical Change

- Acids, metals and bases
- Reactivity series
- Neutralisation
- Electrolysis

Energy Changes

- Exothermic reactions
- Endothermic reaction
- Reaction profiles

Physics Paper I

Energy

- Energy stores
- Energy pathways
- Efficiency

Electricity

- Electrical circuits
- Circuit symbols
- Current, resistance and potential difference

Particle Theory

- States of matter
- Specific heat capacity
- Specific latent heat
- Density

Atoms & Radiation

- Atomic structure
- History of the atom
- Alpha, beta and gamma radiation
- Uses and dangers of radiation

Y11 GCSE Combined Science Topic List: Paper II

Biology Paper II

Homeostasis & Response

- Homeostasis
- Reflexes
- Hormones
- The menstrual cycle

Inheritance, Variation & Evolution

- Inheritance & reproduction
- Variation
- Genetics

Ecology

- Adaptations
- Competition
- Biodiversity
- Food chains
- Cycling materials

Chemistry Paper II

Rates of Reaction

- Factors affecting rates
- Measuring rates
- Equilibrium & reversible reactions

Organic Chemistry

- Fuels & combustion
- Alkanes & alkenes
- Distillation
- Cracking

Chemical Analysis

- Mixtures and formulations
- Separation techniques
- Gas tests

Earth's Atmosphere

- Evolution of Earth's atmosphere
- Global warming & climate change

Using Resources

- Reduce, reuse, recycle
- Life cycle assessments

Physics Paper II

Forces

- Identifying forces
- Resolving forces (H)
- Forces and motion
- Velocity / time graphs
- Acceleration / time graphs
- Newtons laws of motion
- Momentum

Waves

- Wave properties
- Wave calculations
- Refraction
- Electromagnetic waves
- The EM spectrum

Magnets & Electromagnets

- Magnets & magnetic fields
- Electromagnets
- Fleming's Left Hand Rule & the Motor Effect
- Solenoids

Y11 GCSE Separate Science Topic List: Paper I

Biology Paper I

All content listed on the combined science topic list, with the addition of the following topics;

Cell Biology

- No extra content

Organisation

- No extra content

Infection & Response

- Growing bacteria
- Preventing bacterial growth
- Plant disease and plant defences

Bioenergetics

- No extra content

Chemistry Paper I

All content listed on the combined science topic list, with the addition of the following topics;

Atoms & the Periodic Table

- Transition metals

Bonding & Structure

- Nanoparticles
- Applications of nanoparticles

Chemical Calculations

- Yields
- Atom economy
- Titrations
- Gas volumes

Chemical Change

- No extra content

Energy Changes

- Chemical cells & batteries
- Fuel cells

Physics Paper I

All content listed on the combined science topic list, with the addition of the following topics;

Energy

- Infrared Radiation Electricity
- Electrical charges **Particle Theory**
- Gas pressure and volume

Atoms & Radiation

- Nuclear radiation in medicine
- Nuclear fission
- Nuclear fusion
- Nuclear issues

Y11 GCSE Separate Science Topic List: Paper II

Biology Paper II

All content listed on the combined science topic list, with the addition of the following topics;

Homeostasis & Response

- The brain
- The eye
- Eye health
- Plant hormones
- Controlling body temperature
- The kidneys

Inheritance, Variation & Evolution

- Gene expression and mutation
- Cloning
- History of genetics

Ecology

- Rates of decomposition
- Trophic levels
- Biomass
- Food production & security

Chemistry Paper II

All content listed on the combined science topic list, with the addition of the following topics;

Rates of Reaction

- No extra content

Organic Chemistry

- Reactions of alkenes
- Structures and uses of alcohols, carboxylic acids & esters
- Polymers and polymerisation

Chemical Analysis

- Testing for ions
- Instrumental analysis

Earth's Atmosphere

- No extra content

Using Resources

- Rusting
- Alloys, ceramics & composites
- Haber process & fertilisers

Physics Paper II

All content listed on the combined science topic list, with the addition of the following topics;

Forces

- Moments
- Gears and levers
- Conservation of momentum
- Impact forces & safety
- Pressure, upthrust and floatation

Waves

- Sound, ultrasound and seismic waves
- Reflection, refraction, colour and lenses

Magnets & Electromagnets

- Generators & transformers

Space Physics

- The Solar System
- Stars
- Planets & orbits
- The history of the Universe