RATIO

DIVIDING AN AMOUNT INTO RATIOS

RATIO AND DIRECT PROPORTION

single item we can use the unitary method.	600 ÷ 20 = 30g weight of 1 apple 28 × 30 = 840g	Ingredients for 10 Flapiacks	The recipe shows the ingredients needed to make 10 Flapjacks. How much of each will be needed to make 25 flapjacks?		
When working with best value in monetary terms we use: Price per unit = $\frac{price}{quantity}$	Box A has 8 fish fingers costing £1.40. Box B has 20 fish fingers costing £ 3.40. Which box is the better value?	- 80 g rolled oats 60 g butter 30 m/ golden syrup	$80 \div 10 = 8$ $30 \div 3$ $8 \times 25 = 200g$ 3×23 $60 \div 10 = 6$ $36 \div 3$ $26 \times 36 \times 36$	10 = 3 5 = 75g 10 = 3.6	
In recipe terms we use: $Weight per unit$ $= \frac{weight}{quantity}$	Birds Eye B conversion $A = \frac{\pounds 1.40}{8}$ $B = \frac{\pounds 3.40}{20}$ $= \pounds 0.175$ $= \pounds 0.17$ Therefore Box B is better value as each fish finger costs less.	36 g light brown sugar	$6 \times 25 = 150g$ $3.6 \times$ Method 2: 5 flapjacks $30 \div$ $80 \div 2 = 40$ $30 \div$ $40 \times 5 = 200g$ $15 \times$ $60 \div 2 = 30$ $36 \div$ $30 \times 5 = 150g$ $18 \times$	$3.6 \times 25 = 90g$ $30 \div 2 = 15$ $15 \times 5 = 75g$ $36 \div 2 = 18$ $18 \times 5 = 90g$	
Sparx U577 U753	Key Words Unitary Best Value Proportion Quantity	 2) Packet A has 10 toilet rolls costing £3.50. Packet B has 12 toilet rolls costing £3.60. Which is better value for money? Which is better value for money? Ake 24 Strbread 3) If 15 oranges weigh 300g. What will 25 Oranges weigh? 			

PROPORTION

PERIMETER AND CIRCUMFERENCE

AREA OF CIRCLES AND PART CIRCLES

CIRCLES AND COMPOUND AREA

VOLUME AND SURFACE AREAS OF CYLINDERS

CIRCLE THEOREMS

TANGENT TO A CIRCLE

Key Concepts

A tangent touches a circle at one point.

A tangent line is perpendicular to the radius of the circle.

The gradient of the tangent is the **negative reciprocal** of the gradient of the equation of the line of the radius.

sparx

U567

Find the equation of the tangent to the circle with equation: $x^2 + y^2 = 5$

which passes through the point (2,1).

Radius

Tangent

Negative

reciprocal Perpendicular Gradient

Examples

1) Find the equation of the line which is the radius of the circle.

$$gradient = \frac{1}{2}$$
 therefore $y = \frac{1}{2}z$

2) The tangent is perpendicular to the radius.

gradient of tangent = negative reciprocal of $\frac{1}{2}$ = -2

3) Substitute in the given coordinate (2,1) to y = -2x + cy = -2x + c $1 = (-2 \times 2) + c$ 1 + 4 = c

> 5 = cy = -2x + 5

Key Words Find the equation of the tangent to the circle with equation:

 $x^2 + y^2 = 40$

which passes through the point (2,6).

EQUATION OF A CIRCLE

THEORETICAL PROBABILITY

Examples Key Concepts Probability scale: Probabilities can be described Impossible Even chance Certain using words and numerically. There are only red counters, blue counters, white $\frac{3}{4}$ 0 counters and black counters in a bag. 4 2 4 4 We can use fractions, decimals or 0.25 0.75 Blue Black White 0 0.5 1 Colour Red percentages to represent a 0% 25% 50% 75% 100% No. of counters 9 **3***x x*-5 2*x* probability. Theoretical probability is what There are only red counters, blue counters, white A counter is chosen at random, the probability it should happen if all variables counters and black counters in a bag. is red is $\frac{9}{100}$. Work out the probability is black. were fair. Black White Colour Red Blue 9 + 3x + x - 5 + 2x = 100No. of counters 9 5 2 3 All probabilities must add to 1. 6x + 4 = 100*x* = 16 1) What is the probability that a blue counter is The probability of something **NOT** Number of black counters = 16 - 5chosen? $\frac{3}{19} = \frac{number \ of \ blue}{total \ number \ of \ counters}$ happening equals: = 11 2) What is the probability that red is **not** chosen? Probability of choosing black = $\frac{11}{100}$ 1 - (probability of it happening) $\frac{10}{19} = \frac{number \ of \ all \ other \ colours}{total \ number \ of \ counters}$ **Key Words** sparx Theoretical 1 2 3 2 3 1 Probability 5 9 0.37 Prob 4 Prob **2***x* x Fraction Decimal 1a) Calculate the probability of choosing a 2. 2) Calculate the probability of choosing a 2 b) Calculate the probability of not choosing a 3. Percentage or a 3. U803 U408 U510 Certain Impossible **Even chance** ANSWERS: 1a) $\frac{4}{81}$ (b) $\frac{2}{81}$ (c) $\frac{2}{81}$ (c) $\frac{4}{81}$ (c) $\frac{4}{8$

TWO WAY TABLES AND PROBABILITY TABLES

Key Concepts

Two way tables are used to tabulate a number of pieces of information.

Probabilities can be formulated easily from two way tables.

Probabilities can be written as a fraction, decimal or a percentage however we often work with fractions. You do not need to simplify your fractions in probabilities.

Estimating the number of times an event will occur Probability × no. of trials

Sparx

U981

There are only recounters and bla	ed cour ack cour	nters, blu nters in a	e coun a bag.	iters, w	Exar hite	nr 8	oles 0 childi	ren w	ent	on a sc
Colour	Red	Blue	Black	wł	nite	L		or to	YORK	rla won
No. of counters	9	3 <i>x</i>	<i>x</i> -5	2	x	t	to York.			ns wen
A counter is cho	sen at r	andom,	the pro	babilit	v it is				Lo	ondon
red is $\frac{9}{100}$. Work out the probability is black.							Girls			19
9 + 3x + x - 5 + 2x = 100							Boys		23	
6x + 4 = 100 x = 16							Total			42
Number of black counters = $16 - 5$ = 11 Probability of choosing black = $\frac{11}{100}$					What is the probability went to London? $\frac{42}{80}$					
							went to York? $\frac{24}{38}$			
		_			-					22) Com
Key Words	<u> </u>			1	2		3			201 001
Two way tab	le	Prob		0.37	2 <i>x</i>	x				7
Probability Fraction Outcomes Frequency		1a) Calculate the probability of choosing a 2 or a 3.b) Estimate the number of times a 2 will be chosen if the experiment is repeated 300 times.				en	Girls Total b) What chosen,			
······································										

O children went on a school trip. They went to ondon or to York.

23 boys and 19 girls went to London. 14 boys went to York.

	London	York	Total
Girls	19	24	43
Boys	23	14	37
Total	42	38	80

What is the probability that a person is chosen that went to London? $\frac{42}{80}$ If a girl is chosen, what is the probability that she went to York? $\frac{24}{38}$

2a) Complete the two way table:							
		Total					
	9	10	11				
Boys			125	407			
Girls		123					
Total	303	256		831			
b) What is the probability that a Y10 is							

chosen, given that they are a girl .

PROBABILITY TREE DIAGRAMS

Key Concepts Examples There are red and blue counters in a bag. There are red and blue counters in a bag. Independent events are The probability that a red counter is chosen is $\frac{2}{2}$. The probability that a red counter is chosen is $\frac{2}{2}$. events which do not affect A counter is chosen and **not replaced**, then a second counter is A counter is chosen and **replaced**, then a second counter is one another. chosen. chosen. Draw a tree diagram and calculate the probability that two Draw a tree diagram and calculate the probability that two counters of the same colour are chosen. counters of the same colour are chosen. **Dependent events** affect one another's probabilities. Prob of two reds: Prob of two reds: This is also known as 2 2 $\overline{9} \times \overline{8} = \overline{72}$ conditional probability. $\overline{9} \times \overline{9} = \overline{81}$ Prob of two blues : Prob of two blues : В B R 42 6 7 49 R $\overline{9} \times \overline{8} = \overline{72}$ $\overline{9} \times \overline{9} = \overline{81}$ B Prob of same colours: 7 В Prob of same colours: ā $\overline{\mathbf{q}}$ $\frac{2}{72} + \frac{42}{72} = \frac{44}{72}$ 49 53 В $\frac{1}{81} + \frac{1}{81} = \frac{33}{81}$ В 2) There are blue and green pens in a drawer. 1) There are blue and green pens in a drawer. There are 4 blues and 7 greens. There are 4 blues and 7 greens. **Key Words** sparx A pen is chosen and not replaced, then a A pen is chosen and then **replaced**, then a Independent second pen is chosen. second pen is chosen. Dependant Draw a tree diagram to show this information Draw a tree diagram to show this information Conditional and calculate the probability that pens of U558, U729, and calculate the probability that pens of

different colours are chosen.

Probability

Fraction

U821, U806

different colours are chosen.

ANSWERS: 1) 56/121 2) 56/110

FURTHER PROBABILITY

Examples

