RATIO

DIVIDING AN AMOUNT INTO RATIOS

Key Concepts

An amount can be divided into a given ratio.

Red: Green
1:3
For every 1 red there are 3 greens.
A ratio can be converted into fractions.

Red: Green
1:3
$\frac{1}{4}$ are red and $\frac{3}{4}$ are green.

A woman has $£ 400$. She is going to split her money between her two children in the ratio 2:3. How much does each child receive?

Child 1 receives $£ 160$ and Child 2 receives £240.

There are boys and girls at a party in the ratio 5:2.
There are 15 more boys than girls. Calculate the number of people at the party.

$=35$ people

Examples

sparx
M885, M801, M267, M525,

Key Words
Ratio
Divide
Parts

1) Ann made some cakes. She made vanilla cakes and chocolate cakes in the ratio 2:9. What fraction of the cakes were chocolate?
2) Share $£ 25$ in the ratio $7: 3$
3) Katy and Becky share some money in the ratio 2:1. Katy receives $£ 10$ more than Becky. How much do they each receive?
4) Claire and John share some money in the ratio 3:2. Claire receives $£ 18$. How much does John receive?

RATIO AND DIRECT PROPORTION

Key Concepts

To calculate the value for a single item we can use the unitary method.

When working with best value in monetary terms we use:
Price per unit $=\frac{\text { price }}{\text { quantity }}$
In recipe terms we use:
Weight per unit
$=\frac{\text { weight }}{\text { quantity }}$

Box A has 8 fish fingers costing $£ 1.40$.
Box B has 20 fish fingers costing $£ 3.40$.
Box A has 8 fish fingers costing $£ 1.40$.
Box B has 20 fish fingers costing $£ 3.40$. Which box is the better value?

$$
\begin{aligned}
A & =\frac{£ 1.40}{8} & B & =\frac{£ 3.40}{20} \\
& =£ 0.175 & & =£ 0.17
\end{aligned}
$$

Therefore Box B is better value as each fish finger costs less.
28 apples weigh?
$600 \div 20=30 \mathrm{~g} \quad$ weight of 1 apple
$28 \times 30=840 \mathrm{~g}$
?
If 20 apples weigh 600 g . How much would

$$
\begin{aligned}
& 600 \div 20=30 \mathrm{~g} \\
& 28 \times 30=840 \mathrm{~g}
\end{aligned}
$$

Key Words
Unitary
Best Value
Proportion
Quantity

Examples

The recipe shows the ingredients needed to make 10 Flapjacks.
How much of each will be needed to make 25 flapjacks?

Ingredients for 10 Flapjacks
80 g rolled oats
60 g butter
$30 \mathrm{~m} /$ golden syrup
36 g light brown sugar

Method 1: Unitary	
$80 \div 10=8$	$30 \div 10=3$
$8 \times 25=\mathbf{2 0 0 g}$	$3 \times 25=75 \mathrm{~g}$
$60 \div 10=6$	$36 \div 10=3.6$
$6 \times 25=150 \mathrm{~g}$	$3.6 \times 25=90 \mathrm{~g}$
Method 2: 5 flapjacks	
$80 \div 2=40$	$15 \times 5=15$
$40 \times 5=\mathbf{2 0 0 g}$	
$60 \div 2=30$	$18 \div 2=18$
$30 \times 5=150 \mathrm{~g}$	$18=90 \mathrm{~g}$

sparx
U577

U753
U865
2) Packet A has 10 toilet rolls costing $£ 3.50$. Packet B has 12 toilet rolls costing $£ 3.60$. Which is better value for money?
3) If 15 oranges weigh 300 g . What will 25 oranges weigh?

PROPORTION

Key Concept

Proportion states that two fractions or ratios are equivalent.

$$
\frac{4}{6}=\frac{2}{3}
$$

4: $2=2: 1$

Key Words

Ratio: Relationship between two numbers.
Scale: The ratio of the length in a drawing to the length of the real thing.
Proportion: A name
we give to a statement that two ratios are equal.
Exchange rate: The value of one currency for the purpose of conversion to another.

Tip

Working with ratio or proportion requires multiplying or dividing the numbers. Do not add or subtract.

Examples

Write 2: 5 in the form $1: n \mid$ Cake recipe for 6 people.

$a: b=4: 5$ and $b: c=6: 7$
Find $a: b: c$.

3 eggs 300 g flour 150g sugar
What would you need for 8 people?

Questions

1) Write in the form $1: n$
a) $4: 8$
b) $3: 12$
c) $4: 6$
2) $a: b=3: 10$ and $b: c=4: 12$. Find $a: b: c$.
3) Pancakes for 4 people need 2 eggs, 120 g flour and 60 ml milk. How much for 6 people?

PERIMETER AND CIRCUMFERENCE

Key Concepts

Parts of a circle

mference
of a circle is calculated by πd and is the distance around the circle.

Arc length of a sector is calculated by $\frac{\theta}{360} \pi d$.

Calculate:
a) Circumference

$$
\begin{aligned}
\mathrm{C} & =\pi \times 4 \\
& =4 \pi \\
\text { or } & =12.57 \mathrm{~cm}
\end{aligned}
$$

b) Diameter when the circumference is 20 cm

$$
\begin{aligned}
& \text { C }=\pi \times d \\
& 20=\pi \times d \\
& \frac{20}{\pi}=d \\
& \text { Or } 6.37 \mathrm{~cm}
\end{aligned}
$$

Examples

c) Perimeter

$P=\frac{\pi \times 6}{2}+6$
$P=3 \pi+6$
Or $=15.42 \mathrm{~cm}$

d) Arc length

Arc $=\frac{\theta}{360} \times \pi \times d$

Arc $=\frac{28}{360} \times \pi \times 2 \times 10$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 20$
Arc $=\frac{14}{9} \pi$
Or $=4.89 \mathrm{~cm}$

sparx

U604 U950 U221

Calculate:

1) The circumference of a circle with a diameter of 12 cm
2) The diameter of a circle with a circumference of 30 cm
3) The perimeter of a semicircle with diameter 15 cm
4) The arc length of the diagram

Diameter

AREA OF CIRCLES AND PART CIRCLES

Key Concepts

The area of a circle is calculated by πr^{2}

The area of a sector is calculated by $\frac{\theta}{360} \pi r^{2}$

Calculate:

a) Area

b) Radius when the area is $20 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\mathrm{A} & =\pi \times 3^{2} \\
& =9 \pi \\
\text { or } & =28.3 \mathrm{~cm}^{2}
\end{aligned}
$$

c) Area

$P=\frac{\pi \times r^{2}}{2}$
$P=\frac{\pi \times 6^{2}}{2}$

$$
P=18 \pi
$$

Or $=56.55 \mathrm{~cm}^{2}$

d) Area of a sector

$\operatorname{Arc}=\frac{\theta}{360} \times \pi \times r^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 10^{2}$
$\operatorname{Arc}=\frac{28}{360} \times \pi \times 100$
Arc $=\frac{70}{9} \pi$
Or $=24.43 \mathrm{~cm}$

Calculate:

1) The area of a circle with a radius of 9 cm
2) The radius of a circle with an area of $45 \mathrm{~cm}^{2}$
3) The area of a semicircle with diameter of 16 cm
4) The area of the sector in the diagram

CIRCLES AND COMPOUND AREA

Key Concepts

sparx
M169,M231, M280,M291, M595

Key Words
Diameter: Distance from one side of the circle to the other, going through the centre.
Radius: Distance from the centre of a circle to the circumference.
Chord: A line that intersects the circle at two points.
Tangent: A line that touches the circle at only one point.

Compound (shape):

More than one shape joined to make a different shape.

Examples

Find the area and circumference to 2 dp .

Find shaded area to 2dp.

$$
\begin{aligned}
\text { Square area } & =10 \times 10 \\
& =100 m^{2}
\end{aligned}
$$

Circle area $=\pi \times r^{2}$

$$
=\pi \times 5^{2}
$$

$$
=78.54 \mathrm{~m}^{2}
$$

$$
\text { Shaded area }=100-78.54=21.46 m^{2}
$$

If you don't have a calculator you can leave your answer in terms of π.

Formula

Circle Area $=\pi \times r^{2}$
Circumference $=\pi \times d$

Questions

1) Find to 1dp the area and circumference of a circle with:
a) Radius $=5 \mathrm{~cm}$
b) Diameter $=12 \mathrm{~mm}$
c) Radius $=9 \mathrm{~m}$
2) Find the area \& perimeter of a semi-circle with diameter of 15 cm .

VOLUME AND SURFACE AREAS OF CYLINDERS

Key Concepts

A cylinder is a prism with the cross section of a circle.

The volume of a cylinder is calculated by $\pi r^{2} h$ and is the space inside the 3D shape

The surface area of a cylinder is calculated by $2 \pi r^{2}+\pi d h$ and is the total of the areas of all the faces on the shape.

From the diagram calculate:

Examples

b) Surface Area - You can use the net of the shape to help you

Area of two circles
$=2 \times \pi \times r^{2}$
$=2 \times \pi \times 4^{2}$
$=32 \pi$

$$
\begin{gathered}
\text { Area of rectangle } \\
=\pi \times d \times h \\
=\pi \times 8 \times 10 \\
=80 \pi
\end{gathered}
$$

$$
\begin{aligned}
\text { Surface Area } & =32 \pi+80 \pi \\
& =112 \pi \\
\text { or } & =351.86 \mathrm{~cm}^{3}
\end{aligned}
$$

Calculate the volume and surface area of this cylinder

CIRCLE THEOREMS

The angle between a radius and a tangent is 90°

The angle at the centre is twice
that at the circumference

Angles at the circumference are equal

The angle in a semi circle is 90°

Key Concepts

Key Words Radius Centre Tangent Circumference Right angle

Try look, cover, write, check to be able to identify and describe each of the 7 circle theorems.

1. Read through the theorems
2. Cover them over
3. Attempt to recreate them on another sheet of paper
4. Check how many you remembered perfectly. Try again until you have all 7.

TANGENT TO A CIRCLE

Key Concepts

A tangent touches a circle at one point.

A tangent line is perpendicular to the radius of the circle.

The gradient of the tangent is the negative reciprocal of the gradient of the equation of the line of the radius.
sparx

U567

Find the equation of the tangent to the circle with equation:

$$
x^{2}+y^{2}=5
$$

which passes through the point $(2,1)$.

Examples

1) Find the equation of the line which is the radius of the circle.

$$
\text { gradient }=\frac{1}{2} \quad \text { therefore } y=\frac{1}{2} x
$$

2) The tangent is perpendicular to the radius.

$$
\begin{aligned}
\text { gradient of tangent } & =\text { negative reciprocal of } \frac{1}{2} \\
& =-2
\end{aligned}
$$

3) Substitute in the given coordinate $(2,1)$ to $y=-2 x+c$

$$
\begin{gathered}
y=-2 x+c \\
1=(-2 \times 2)+c \\
1+4=c \\
5=c \\
y=-2 x+5
\end{gathered}
$$

Key Words
Radius
Tangent Negative reciprocal
Perpendicular Gradient

Find the equation of the tangent to the circle with equation:

$$
x^{2}+y^{2}=40
$$

which passes through the point $(2,6)$.

EQUATION OF A CIRCLE

Key Concepts

The equation of a circle will be in the format:
$x^{2}+y^{2}=$ radius 2
The centre of each circle will be at the coordinate (0,0).

Key Words
Radius Centre Sketch
Square root

Examples

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
\text { Radius } & =\sqrt{4} \\
& = \pm 2
\end{aligned}
$$

Therefore we can plot the following coordinates to support us sketching our graph: $(0,2),(0,-2),(2,0),(-2,0)$

Calculate the length of the radius for each of the following equations of circles:

1) $x^{2}+y^{2}=25$
2) $x^{2}+y^{2}=49$
3) $x^{2}+y^{2}=256$
4) $x^{2}+y^{2}=22$

THEORETICAL PROBABILITY

Key Concepts

Probabilities can be described using words and numerically.

We can use fractions, decimals or percentages to represent a probability.

Theoretical probability is what should happen if all variables were fair.

All probabilities must add to 1.

The probability of something NOT happening equals:

1 - (probability of it happening)

Probability scale: Examples

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	3	5	2

1) What is the probability that a blue counter is chosen? $\quad \frac{3}{19}=\frac{\text { number of blue }}{\text { total number of counters }}$
2) What is the probability that red is not chosen?

$$
\frac{10}{19}=\frac{\text { number of all other colours }}{\text { total number of counters }}
$$

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$
$=11$
Probability of choosing black $=\frac{11}{100}$

sparx

Key Words
Theoretical
Probability Fraction Decimal

Percentage
Certain
Impossible
Even chance

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	5	4	9

1a) Calculate the probability of choosing a 2 .
b) Calculate the probability of not choosing a 3 .

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

2) Calculate the probability of choosing a 2 or a 3.

TWO WAY TABLES AND PROBABILITY TABLES

Key Concepts

Two way tables are used to tabulate a number of pieces of information.

Probabilities can be formulated easily from two way tables.

Probabilities can be written as a fraction, decimal or a percentage however we often work with fractions. You do not need to simplify your fractions in probabilities.

Estimating the number of times an event will occur

Probability \times no. of trials

U981

Examples

There are only red counters, blue counters, white counters and black counters in a bag.

Colour	Red	Blue	Black	White
No. of counters	9	$3 x$	$x-5$	$2 x$

A counter is chosen at random, the probability it is red is $\frac{9}{100}$. Work out the probability is black.

$$
\begin{aligned}
9+3 x+x-5+2 x & =100 \\
6 x+4 & =100 \\
x & =16
\end{aligned}
$$

Number of black counters $=16-5$
= 11
Probability of choosing black $=\frac{11}{100}$

80 children went on a school trip. They went to London or to York.
23 boys and 19 girls went to London. 14 boys went to York.

	London	York	Total
Girls	19	$\mathbf{2 4}$	$\mathbf{4 3}$
Boys	23	14	$\mathbf{3 7}$
Total	$\mathbf{4 2}$	$\mathbf{3 8}$	80

What is the probability that a person is chosen that went to London? $\frac{42}{80}$
If a girl is chosen, what is the probability that she went to York? $\frac{24}{38}$

Key Words Two way table Probability Fraction Outcomes Frequency

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Prob	0.37	$2 x$	x

1a) Calculate the probability of choosing a 2 or a 3.
b) Estimate the number of times a 2 will be chosen
if the experiment is repeated 300 times.

2a) Complete the two way table:

	Year Group			Total
	9	10	11	
Boys			125	407
Girls		123		
Total	303	256		831

b) What is the probability that a Y 10 is chosen, given that they are a girl .

PROBABILITY TREE DIAGRAMS

Key Concepts

Independent events are events which do not affect one another.

Dependent events affect one another's probabilities. This is also known as conditional probability.

Examples

There are red and blue counters in a bag.
The probability that a red counter is chosen is $\frac{2}{9}$.
A counter is chosen and replaced, then a second counter is chosen.
Draw a tree diagram and calculate the probability that two counters of the same colour are chosen.

$$
\begin{aligned}
& \text { Prob of two reds: } \\
& \frac{2}{9} \times \frac{2}{9}=\frac{4}{81}
\end{aligned}
$$

Prob of two blues:

$$
\frac{7}{9} \times \frac{7}{9}=\frac{49}{81}
$$

Prob of same colours: $\frac{4}{81}+\frac{49}{81}=\frac{53}{81}$

There are red and blue counters in a bag. The probability that a red counter is chosen is $\frac{2}{9}$.
A counter is chosen and not replaced, then a second counter is chosen.
Draw a tree diagram and calculate the probability that two counters of the same colour are chosen.

Prob of same colours:

$$
\frac{2}{72}+\frac{42}{72}=\frac{44}{72}
$$

U558, U729, U821, U806

1) There are blue and green pens in a drawer

There are 4 blues and 7 greens.
A pen is chosen and then replaced, then a second pen is chosen.
Draw a tree diagram to show this information and calculate the probability that pens of different colours are chosen.
2) There are blue and green pens in a drawer. There are 4 blues and 7 greens.
A pen is chosen and not replaced, then a second pen is chosen.
Draw a tree diagram to show this information and calculate the probability that pens of different colours are chosen.

FURTHER PROBABILITY

