SCALES AND BEARINGS

Key Concepts

Scales are used to reduce real world dimensions to a useable size．

A bearing is an angle， measured clockwise from the north direction．It is given as a $\mathbf{3}$ digit number．

N

The diagram shows the position of a boat B and dock D．

The scale of the diagram is 1 cm to 5 km ．

Examples

a）Calculate the real distance between the boat and the dock．

$$
6 \mathrm{~cm}=6 \times 5
$$

$$
=30 \mathrm{~km}
$$

b）State the bearing of the boat from the dock． 110°
c）Calculate the bearing of the dock from the dock． $180^{\circ}-110^{\circ}=70^{\circ}$ because the angles are cointerior
$360^{\circ}-70^{\circ}=290^{\circ}$ because angles around a point equal 360°

Key Words
Scale
Bearing
Clockwise North

b）

UNDERSTANDING PERCENTAGES and FRACTIONS

FRACTIONS, DECIMALS AND PERCENTAGES

PERCENTAGES

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Calculating percentages of an amount with a calculator:

Amount \times percentage as a decimal

Calculating percentage increase/decrease:

Amount $\times(1 \pm$ percentage as a decimal)

Calculating a percentage - non calculator:

Calculate 32\% of 500g:

$10 \% \rightarrow 500 \div 10=50$	
$30 \% \rightarrow 50 \times 3=150$	32\% = $150+10$
$1 \% \rightarrow 500 \div 100=5$	$=160 \mathrm{~g}$
$2 \% \rightarrow 5 \times 2=10$	

Calculating a percentage - calculator:

Calculate 32% of 500 g :

Value \times (percentage $\div 100)$
$=500 \times 0.32$
$=160 \mathrm{~g}$

Examples

A dress is reduced in price by 35% from $£ 80$. What is it's new price?

Value $\times(1-$ percentage as a decimal $)$
$=80 \times(1-0.35)$
= $£ 52$

A house price appreciates by 8% in a year. It originally costs $£ 120,000$, what is the new value of the house?

Value $\times(1+$ percentage as a decimal $)$
$=120,000 \times(1+0.08)$
= $£ 129,600$

Key Words
Percent Increase/decrease Appreciate Depreciate Multiplier Divide

1) Write the following as a decimal multiplier: a) 45% b) 3% c) 2.7%
2) Calculate 43% of 600 without using a calculator
3) Calculate 72% of 450 using a calculator

4a) Decrease $£ 500$ by 6%
b) Increase 65 g by 24%
c) Increase 70 m by 8.5%

PERCENTAGES AND INTEREST

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Per annum is often used in

 monetary questions meaning per year.Depreciation means that the value of something is going down or reducing.

Examples

Simple interest:

Joe invest $£ 400$ into a bank account that pays 3% simple interest per annum.
Calculate how much money will be in the bank account after 4 years.
$3 \%=£ 4 \times 3$
$=£ 12$
4 years $=£ 12 \times 4$
Interest $=£ 48$
Total in bank account $=£ 400+£ 48$

$$
=£ 448
$$

Compound interest:

Joe invest $£ 400$ into a bank account that pays 3\% compound interest per annum.
Calculate how much money will be in the bank account after 4 years.

Value $\times(1 \pm \text { percentage as a decimal })^{\text {years }}$
$=400 \times(1+0.03)^{4}$
$=400 \times(1.03)^{4}$
$=£ 450.20$
sparx
M901

Key Words
Percent
Depreciate Interest Annum Simple Compound Multiplier

1) Calculate a) 32% of 48 b) 18% of 26
2) Kane invests $£ 350$ into a bank account that pays out simple interest of 6%. How much will be in the bank account after 3 years?
3) Jane invests $£ 670$ into a bank account that pays out 4\% compound interest per annum. How much will be in the bank account after 2 years?

PERCENTAGE CHANGE AND REVERSE PERCENTAGES

Key Concepts

Calculating percentages of an amount without a calculator:
10% = divide the value by 10
1% = divide the value by 100

Calculating percentages of an amount with a calculator:

Amount \times percentage as a decimal

Calculating percentage increase/decrease:

Amount $\times(1 \pm$ percentage as a decimal)

Percentage change:

A dress is reduced in price by 35\% from $£ 80$. What is it’s new price?

Value $\times(1-$ percentage as a decimal $)$ $=80 \times(1-0.35)$
$=£ 52$

A house price appreciates by 8% in a year. It originally costs $£ 120,000$, what is the new value of the house?

Value $\times(1+$ percentage as a decimal $)$ $=120,000 \times(1+0.08)$
$=£ 129,600$

Reverse percentages: This is when we are trying to find out the original amount.

A pair of trainers cost $£ 35$ in a sale. If there was 20% off, what was the original price of the trainers?

Value $\div(1-0.20)$
$=35 \div 0.8$
$=£ 43.75$

A vintage car has increased in value by 5\%, it is now worth $£ 55,000$. What was it worth originally?

Value $\div(1+0.05)$
$=55,000 \div 1.05$
$=£ 52,380.95$
Examples

Key Words
Percent Increase/decrease

Reverse
Multiplier Inverse

1a) Decrease $£ 500$ by 6%
b) Increase 70 by 8.5%
2) A camera costs $£ 180$ in a 10% sale. What was the pre-sale price
3) The cost of a holiday, including VAT at 20% is $£ 540$. What is the pre-VAT price?

COMPOUND INTEREST AND DEPRECIATION

Key Concepts
We use multipliers to increase and decrease an amount by a particular percentage.

Percentage increase:
Value $\times(1+$ percentage as a decimal $)$

Percentage decrease:

Value $\times(1-$ percentage as a decimal $)$
Appreciation means that the value of something is going up or increasing.

Depreciation means that the value of something is going down or reducing.

Per annum is often used in monetary questions meaning per year.

Examples

Compound interest:

Joe invest $£ 400$ into a bank account that pays 3% compound interest per annum. Calculate how much money will be in the
bank account after 4 years.
Value
$\times(1+\text { percentage as a decimal })^{\text {years }}$
$=400 \times(1+0.03)^{4}$
$=400 \times(1.03)^{4}$
$=£ 450.20$

Compound depreciation:
The original value of a car is $£ 5000$. The value of the car depreciates at a rate of 7.5% per annum. Calculate the value of the car after 3 years.

Value $\times(1-\text { percentage as a decimal })^{\text {years }}$
$=5000 \times(1-0.075)^{3}$
$=5000 \times(0.925)^{3}$
$=£ 3957.27$

Key Words Percent Appreciate Depreciate Interest Annum Compound Multiplier

1) Jane invests $£ 670$ into a bank account that pays out 4\% compound interest per annum. How much will be in the bank account after 2 years?
2) A house has decreased in value by 3% for the past 4 years. If originally it was worth $£ 180,000$, how much is it worth now?

COLUMN VECTORS

Key Concepts

Vectors describe translations.
$(x) \rightarrow+$ move right - move left
$y \xrightarrow{+} \rightarrow$ move up

- move down

Examples

Adding vectors:

$$
\binom{2}{3}+\binom{5}{-4}=\binom{2+5}{3+-4}=\binom{7}{-1}
$$

Subtracting vectors:

$$
\binom{3}{9}-\binom{2}{-3}=\binom{3-2}{9--3}=\binom{1}{12}
$$

Vectors and scalar multipliers:

$$
2\binom{8}{-3}=\binom{2 \times 8}{2 \times-3}=\binom{16}{-6}
$$

sparx

U632, U903, U564

Key Words

 Column Vector Translation ResultantCalculate the resultant vector:
a) $\binom{3}{2}+\binom{2}{-7}$
b) $\binom{5}{2}-\binom{4}{-3}$
c) $3\binom{3}{-2}$

TRANSLATION AND ENLARGEMENT

Key Concepts

A translation moves a shape on a coordinate grid. Vectors are used to instruct the movement:

Positive-Right
$\binom{x}{y}^{\nearrow}$
Negative - Left
Positive-Up
Negative - Down

An enlargement changes the size of an image using a scale factor from a given point.
sparx
U196
U519
U134

Examples

Translate shape A by $\binom{-3}{-2}$. Label it B

Enlarge shape A by scale factor 2 from point P.

Enlarge shape A by scale factor $\frac{1}{2}$ from point P.

Key Words
Translation Enlargement Scale factor

Centre
Positive
Negative

VECTORS IN DIAGRAMS

Key Concepts

Vectors notation:
$\boldsymbol{a} \quad \overrightarrow{\mathrm{AB}} \quad \mathbf{a}$
Magnitude: Length of the arrow

Direction: Where the arrow is pointing

Parallel lines of equal length have the same vector.

Parallel lines of different lengths have a multiple of the vector.

Travelling against an arrow changes the sign of the vector.

Examples

b) State the vector of $\overrightarrow{\mathrm{AO}}$.

As we are travelling against the arrow, the vector changes sign.
Therefore $\overrightarrow{A O}=-b$
$\overrightarrow{O A}=\boldsymbol{b} \quad \overrightarrow{O B}=\boldsymbol{a}$
OABC is a parallelogram. M is the midpoint of $A C$.
a) State the vector of $\overrightarrow{O C}$.

As $B C$ is parallel and equal in length to $O A$, it has the vector value of b.
Therefore $\overrightarrow{O C}=a+b$
c) State the vector of $\overrightarrow{O M}$.

As $\overrightarrow{A C}$ is parallel and equal in length to $O B$, is has the vector value of $\boldsymbol{a} . \mathrm{M}$ is the midpoint of $\overrightarrow{A C}$.
Therefore $\overrightarrow{\mathrm{OM}}=b+\frac{1}{2} a$

sparx

U903, U564

OABC and BCDE are two identical parallelograms.
a) State the vector of $\overrightarrow{O D}$
b) State the vector of $\xrightarrow{\overrightarrow{O C}}$
c) State the vector of $\overrightarrow{A B}$
d) State the vector of $\overrightarrow{O E}$

RATIO AND COLLINEAR PROOFS IN VECTORS

Key Concepts

Parallel lines of different lengths have a multiple of the vector.

For two vectors to form a straight line they must have vector values which are multiples of one another and must have a common point.

sparx
 U781, U660, U560, U781

Examples

C is the point such that $O C: C A=4: 1$
M is the midpoint of $A B$.
D is the point such that $O B: O D=3: 4$
Show that C, M and D are on the same straight line.

$$
\begin{aligned}
\overrightarrow{\mathrm{CA}} & =\frac{1}{5} \overrightarrow{O A} \\
& =\frac{1}{5}(5 a) \\
& =a
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{CM}} & =\overrightarrow{\mathrm{CA}}+\overrightarrow{\mathrm{AM}} \\
& =a+\frac{1}{2}(-5 a+3 b) \\
& =a-2.5 a+1.5 b \\
& =-1.5 a+1.5 b
\end{aligned}
$$

$$
\overrightarrow{\mathrm{MD}}=\overrightarrow{\mathrm{MB}}+\overrightarrow{\mathrm{BD}}
$$

$$
=\frac{1}{2}(-5 a+3 b)+4 b
$$

$$
=-2.5 a+1.5 b+b
$$

$$
=-2.5 a+2.5 b
$$

C, M and D are on a straight line as $C M$ and MD are multiples of one another and have the common point of M.

