FACTORS, MULTIPLES AND PRIMES

Key Concept Factors: Find these in pairs 12 1, 12 2, 6 3, 4 Multiples: Start with the	Key Words Factor: The numbers which fit into a number exactly. Multiple: The numbers in the times table. Prime: Numbers which have only two factors which are 1 and itself. Highest Common Factor: The highest factor which is common for both numbers.	Examples Lowest Common Multiple (LCM) Q - Find the LCM of 6 and 7: 6 - 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 7 - 7, 14, 21, 28, 35, 42, 49, 56, LCM = 42 Highest Common Factor (HCF) O Find the LCE of 18 and 24	
Start with the number itself 7 – 7, 14, 21, 28,	numbers. Lowest Common Multiple: The smallest multiple which is common to both numbers	Q – Find the HCF of 18 and 24 18 – 1, 2, 3, 6, 9, 18 24 – 1, 2, 3, 4, 6, 8, 12, 24	
	Tin	HCF = 6	
Sparx M462 M823	There is only one even prime number which is the number 2. This can be used to beln solve lots of	QuestionsL) List the first 5 multiples of:a)7b)12c)502) List the factors of:a)12b)15c)163)a)Find the LCM of 5 and 7b)Find the HCF of 20 and 16	
M322	problems.	2) 9) 1, 2, 3, 4, 6, 12 b) 1, 3, 5, 15 c) 1, 2, 4, 8, 16 3) 9) 35 b) 4 ANSWERS: 1) 9) 7, 14, 21, 28, 35 b) 12, 24, 36, 48, 60 c) 50, 100, 150, 200, 250	

Year 10 Higher FACTORS, MULTIPLES AND PRIMES

Key Concepts

Prime factor decomposition Breaking down a number into its prime factors

Highest common factor Finding the largest number which divides into all numbers given

Lowest common multiple Finding the smallest number which both numbers divide into

DELTA

Academies Trust

POWERS AND ROOTS

2)

3)

Key Words

Square: A square number is the result of multiplying a number by itself. **Cube:** A cube number is the result of multiplying a number by itself twice. **Root:** A root is the reverse of a power. Prime number: A prime is a number that has only two factors which are 1 and itself. **Reciprocal:** This is found by doing 1 divided by the number. Factor: A number that fits into another number exactly. Tip A number with an odd

amount of factors must

be a square number.

Examples What is 2^4 ? $2 \times 2 \times 2 \times 2 = 16$ What is $\sqrt{64}$? $8^2 = 64$, so $\sqrt{64} = \pm 8$ What is the reciprocal of 5? Write 36 as a product of prime factors 36 $36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$ 2 18 2 Product means 'multiply' 3 3 Questions

1) a) 2^5 b) 3^3 c) 1^{17} d) $\sqrt{81}$ e) $\sqrt{16}$ f) $\sqrt[3]{64}$ Find the reciprocal of: a) 4 b) $\frac{1}{3}$ c) 0.25 Write 72 as a product of primes. 5) a) $\frac{4}{3}$ b) 3 c) 4 3) $\Sigma_3 \times 3_5$

 $h(1 \quad h \pm (9 \quad 0 \pm (h))$ ד (כ_עד (q 75 (e (T :SA3W2NA

SEQUENCES

M241, M381, M991

Year 10 Higher SEQUENCES

Key Concepts Arithmetic sequences increase or decrease by a common amount each time.

Quadratic sequences have a common 2^{nd} difference.

Fibonacci sequences Add the two previous terms to get the next term

Geometric series has a common multiple between each term

A hegartymaths 198, 247-250, 264

DELTA

Academies Trust

Linear sequence 4, 7, 10, 13, 16 a) State the nt 3n + 1 Difference	es: Examples h term b) What is the 100^{th} term in the sequence? e 0^{th} term $3n + 1$ $3 \times 100 + 1 = 301$	c) Is 100 in this sequence? 3n + 1 = 100 3n = 99 n = 33 Yes as 33 is an integer.
Quadratic sequences: 2a = 4 $3aa = 2 3 \times 3$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	51 8 First difference Second difference $n^2 + 0n + 1 \rightarrow 2n^2 + 1$
Key Words Linear Quadratic Arithmetic Geometric Sequence Nth term	 A) 1, 8, 15, 22, 1) Find the nth term b) Calculate the 50 B) Find the nth term for: 1) 5, 12, 23, 38, 57, 2) 3, 11, 2 τ + u - zuɛ (ζ ζ + u + zuζ (τg Jəβəţui uɛ si u sɛ s) 	^{0th} term c) Is 120 in the sequence? 5, 45, 71, אל os &t (٤ לד (כ 9 – u2 (דע :SNAWSNA