PRESENTING AND INTERPRETTING DATA

TYPES OF DATA AND GRAPHS

Key Concepts

Qualitative data: data collected that is described in words **not** numbers. e.g. race, hair colour, ethnicity.

Quantitative data: this is the collection of numerical data that is either <u>discrete</u> or <u>continuous</u>.

Discrete data: numerical data that is categorised into a finite number of classifications.

e.g. number of siblings in a family, shoe size, .

Continuous data: numerical data that can take any value. This data is usually measured on a large number scale. e.g. height, weight, time, capacity.

sparx

U363 U557

U506 U508

U983 U814

Quantitative

Graph

ANSWERS: 1) Qualitative 2) Continuous, quantitative 3) Discrete, quantitative 4) Continuous, quantitative 5) Discrete, quantitative

PIE CHARTS AND SCATTER-GRAPHS

Key Concepts

Pie charts use angles to represent, proportionally, the quantity of each group involved.

Pie charts can only be compared to one another when the total frequency or populations are given.

Scatter-graphs show the relationship between two variables. This relationship is called the **correlation**.

Sparx U508 U172 U854 U199 U277 U128

BAR CHARTS AND PICTOGRAMS

AVERAGES FROM A LIST AND REVERSE MEAN

AVERAGES FROM A TABLE

Key Concepts

Modal class (mode) Group with the highest frequency.

Median group

The median lies in the group which holds the $\frac{total frequency+1}{2}$ position. Once identified, use the cumulative frequency to identify which group the median belongs from the table.

Estimate the mean

For grouped data, the mean can only be an estimate as we do not know the exact values in each group. To estimate, we use the midpoints of each group and to calculate the mean we find $\frac{total fx}{total f}$

	-		-
Length (L cm)	Frequency (f)	Midpoint (x)	fx
$0 < L \le 10$	10	5	10 × 5 = 50
$10 < L \le 20$	15	15	15 × 15 = 225
$20 < L \le 30$	23	25	23 × 25 = 575
$30 < L \le 40$	7	35	7 × 35 = 245
Total	55		1095

Examples

a)

Estimate the mean of this data. step 1: calculate the total frequency step 2: find the midpoint of each group step 3: calculate $f \times x$ step 4: calculate the mean shown below

 $\frac{Total fx}{Total f} = \frac{1095}{55} = 19.9 \text{cm}$

- b) Identify the modal class from this data set. " *the group that has the highest frequency* " Modal class is $20 < x \le 30$
- c) Identify the group in which the median would lie. Median = $\frac{Total frequency+1}{2} = \frac{56}{2} = 28th value$ "add the frequency column until you reach the 28th value" Median is the in group 20 < x ≤ 30

sparx

Key Words

Midpoint

Mean

Median Modal

	Cost (£C)	Frequency	Midpoint	
	$0 < C \leq 4$	2		
	$4 < C \leq 8$	3		
	$8 < C \leq 12$	5		
	$12 < C \leq 16$	12		
	$16 < C \le 20$	3		

From the data:

a) Identify the modal class.

b) Identify the group which holds the median.

c) Estimate the mean.

U569 U877 U717

ANSWERS: a) $12 < C \le 13^{ch}$ value is in the group $12 < C \le 13^{ch}$ (b) $12 < C \le 13^{ch}$ (c) $12 < C \le 13^{ch}$ (c) $12 < C \le 13^{ch}$

LISTING OUTCOMES AND SAMPLE SPACE

Key Concepts When there are a number		Exan	nples		throw	n and t	he pos	sible ou	tcomes	are shown in
of different possible outcomes in a situation	Starter	Main	the sample space diagram below:							
we need a logical and systematic way in which to view them all.	Fishcake Melon	Lasagne Beef Salmon		1 2 3	1 (1,1) (2,1) (3,1)	2 (1,2) (2,2) (3,2)	3 (1,3) (2,3) (3,3)	4 (1,4) (2,4) (3,4)	5 (1,5) (2,5) (3,5)	6 (1,6) (2,6) (3,6)
We can be asked to list all possible outcomes e.g.		Saimon		4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
choices from a menu, order in which people finish a race. We can also use a sample space diagram . This records the possible outcomes of two different events happening.	when one starter a chosen. F, L F, B F, S Note: You can write	mbinations possible er and one main are M, L M, B M, S write the initials of each You do not need to write d.		$\frac{3}{6} = \frac{(3,1)}{(6,1)} + \frac{(3,2)}{(6,3)} + \frac{(3,3)}{(6,4)} + \frac{(3,3)}{(6,5)} + \frac{(3,6)}{(6,6)}$ 1) What is the probability that 2 numbers which are the same are rolled? $\frac{6}{36} = \frac{outcomes where numbers are the same}{total number of outcomes}$ 2) What is the probability that two even numbers are rolled? $\frac{9}{36} = \frac{outcomes where numbers are both even}{total number of outcomes}$					(6,6) ch are the same <i>he same</i> es ers oth even	
Sparx U104	Key Words List Outcome Sample space Probability	1) Abe, Ben and Carl have a race. List all of the options for the order that the boys can end the race.	Coin	Heads Tails	Red H,R T,R	Gr	nner een ,G ,G	Blue H,B T,B	proba head b) Wl proba head	Vhat is the ability that a is landed on? hat is the ability that a and a green anded on?
U296	FIODADIIIty			9 τ(q	<mark>9</mark> (е7	AB) (B,	AD (AD	, BAC, B	BC, ACB	а (1 :2яэw2nA

VENN DIAGRAMS

Key Concepts

Venn diagrams show all possible relationships between different sets of data.

Probabilities can be derived from Venn diagrams. Specific notation is used for this:

 $P(A \cap B) = Probability of A and B$

 $P(A \cup B) = Probability of A or B$

P(A') = Probability of **not** A

STATISTICAL DIAGRAMS

Key Concepts

A **frequency polygon** is a line graph which connects the midpoints of grouped data.

A **pie chart** represents data into proportional sections.

A **scatter-graph** shows the relationship between two variables. **Correlation** is used to describe the relationships.

Positive Negative No Correlation Correlation

Sparx U840, U508, U172, U854, U277, U128

ANSWERS: 2) Angles – 40, 70, 105, 100, 45 3a) Negative correlation b) Between £1200 and £1300

CUMULATIVE FREQUENCY AND BOX PLOTS

Key Concepts

A cumulative frequency graph shows a running total of frequency.

We can read the **median** and the interquartile range from this graph.

A box plot shows the distribution of data using minimum, maximum, median and quartiles.

HISTOGRAMS

Key Concepts

A **Histogram** is a graphical representation of data consisting of rectangles whose **area is proportional to the frequency** of a variable and whose **width is equal to the group width**.

U983

U814

A group of people are weighed and their results recorded. Below is their data. A histogram is used to represent this data.

Weight	Frequency	Frequency density
50 < w ≤ 65	30	30 ÷ 15 = 2
65 < w ≤ 70	30	30 ÷ 5 = 6
70 < w ≤ 75	40	40 ÷ 5 = 8
75 < w ≤ 85	40	40 ÷ 10 = 4
85 < w ≤ 100	15	15 ÷ 15 = 1

65 < **s** ≤ 75

 $75 < s \leq 90$

48

Key Words

Histogram

Frequency density

Group width

Median

Weight (kg)

Speed (mph)Frequency $40 < s \leq 55$ 6 $55 < s \leq 60$ 10 $60 < s \leq 65$ 46

On a separate set of axes, draw your histogram.

ANSWERS: Frequency densities = 0.4, 2, 9.2, 4.8, 0.4

TWO WAY TABLES AND PROBABILITY TABLES

Key Concepts

Two way tables are used to tabulate a number of pieces of information.

Probabilities can be formulated easily from two way tables.

Probabilities can be written as a **fraction, decimal or a percentage** however we often work with fractions. You do not need to simplify your fractions in probabilities.

Estimating the number of times an event will occur Probability × no. of trials

Sparx

U981

	counters and bla	ick cour	London or to Vor							
I	Colour	Red	Blue	Blac	K Wr	nite	23 boys and			
l	No. of counters	9	3 <i>x</i>	<i>x</i> -5	2	x	to York.			
I	A counter is cho	sen at r	andom,	the pr	obabilit	y it is		London		
I	red is $\frac{9}{100}$. Work	out the	probab	ility is	black.		Girls	19		
I	9 + 3	3x + x -	- 5 + 2x				Boys	23		
I	6x + 4 = 100 $x = 16$						Total	42		
l	Number of black		= 11				What is the probability went to London? $\frac{42}{80}$			
l	Probability of ch	oosing	black = $\frac{1}{1}$	11			If a girl is cl	nosen, what i		
							went to Yo	'k? $\frac{24}{38}$		
						-		2a) Com		
	Key Words				1	2	3	20,0011		
	Two way tabl	e 📘	Р	rob	0.37	2 <i>x</i>	x	D		
	Probability		-		•	-	choosing a 2 or a	GILIS		
	Fraction	- i					nes a 2 will be cho 00 times.	Total		
	Outcomes Frequency							b) What i chosen, g		

30 children went on a school trip. They went to ondon or to York.

23 boys and 19 girls went to London. 14 boys went to York.

	London	York	Total
Girls	19	24	43
Boys	23	14	37
Total	42	38	80

What is the probability that a person is chosen that went to London? $\frac{42}{80}$ If a girl is chosen, what is the probability that she went to York? $\frac{24}{38}$

		Year Group					
	9	10	11				
Boys			125	407			
Girls		123					
Total	303	256		831			

chosen, given that they are a girl .

AUSWERS: 1) a) P(2) = 0.42 P(3) = 0.21 b) 0.42×300=126 2b) 123/424

FOUR OPERATIONS WITH FRACTIONS

INTEGERS, ROUNDING AND PLACE VALUE

Key Concepts	Examples
Digits are the individual components of a number. Integers are whole numbers. Rounding rules: A value of 5 to 9 rounds	Order the following numbers starting with the smallest:Round 3.527 to:1) 5, -3, 4, 7, -2 -3, -2, 4, 5, 7a) 1 decimal place $3.5 2 7 \rightarrow 3.5$ b) 2 decimal places2) 0.067 0.6 0.56 0.65 0.605 $3.5 2 7 \rightarrow 3.53$
the number up. A value of 0 to 4 keeps the number the same.	Rewrite 0.067, 0.600, 0.560, 0.650, 0.605 0.067 0.56 0.6 0.605 0.65 c) 1 significant figure 3 5 2 7 → 4
Sparx M696 M365	Key Words Integer Even Digit 0 Odd becimal place Significant figures 1 A) Order the following numbers starting with the smallest: 1 6, -2, 0, -5, 3 2) 0.72, 0.7, 0.072, 0.07, 0.702 B) Round the following numbers to the given degree of accuracy 1 14. 1732 000ε (ε 90.0 (z 7.*)τ (τθ) 2/0 'Z0.0 'Z0.0 'Z0.0 'Z0.0 (z 9 'ε '0 'z- 's- (τψ))

DECIMALS

CUMULATIVE FREQUENCY AND BOX PLOTS

Key Concepts

A cumulative frequency graph shows a running total of frequency.

We can read the **median** and the interquartile range from this graph.

A box plot shows the distribution of data using minimum, maximum, median and quartiles.

RATIONALISE THE DENOMINATOR

