EXPAND AND SIMPLIFY BRACKETS

Key Concepts

Expanding brackets

Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket. Double: Where each term in the first bracket is multiplied by all terms in the second bracket.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares

When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

Sparx U179 U768 U768 U365 U365 U178 U963 U858 U228 U960

	Examples	Quadratic expressions		
	· ·	Expand and simplify:	Factorise:	
	Linear expressions Expand and simplify where appropriate 1) 7 $(3 + a) = 21 + 7a$	1) $(p+2)(2p-1)$ = $2p^2 + 4p - p - 2$	3) $x^2 - 2x - 3$ = $(x - 3)(x + 1)$	
	2) $2(5 + a) + 3(2 + a) = 10 + 2a + 6 + 3a$ = 5a + 16	$=2p^{2}+4p^{2}-p^{2}$ $=2p^{2}+3p-2$	Factorise and solve:	
5	3) Factorise $9x + 18 = 9(x + 2)$	2) $(p+2)^2$	4) $x^{2} + 4x - 5 = 0$ (x - 1)(x + 5) = 0 Therefore the colutions are:	
	4) Factorise 6e ² – 3e = <mark>3e(2e – 1)</mark>	(p+2)(p+2)	Therefore the solutions are: Either $x - 1 = 0$ x = 1	
		$= p^{2} + 2p + 2p + 4$ $= p^{2} + 4p + 4$	Or $x + 5 = 0$ x = -5	
Key Words (1) Expand and simplify (a) $3(2 - 7f)$ (b) $5(m - 2) + 6$ (c) $3(4 + t) + 2(5 + t)$				
	Expand 2) Factorise (a) 6m + 12t (b) 9t - 3p (c) 4d ² - 2d Factorise 3) Expand (5g - 4)(2g + 1) 5			
5				
8		4) (a) Factorise $x^2 - 8x + 15$ (b) Factorise and solve $x^2 + 7x + 10 = 0$		
	Solve 3) $10g^2 - 3g - 4$ 4) (a) $(x - 3)(x - 5)$ (b) $x = -2$ or $x = -5$ ANSWERS: 1) (a) $6 - 21f$ (b) $5m - 4$ (c) $22 + 5t$ 2) (a) $6(m + 2t)$ (b) $3(3t - p)$ (c) $2d(2d - 1)$			

REARRANGING EQUATIONS

Key Concepts

Rearranging an equation: Working with inverse operations to isolate a highlighted variable.

When rearranging we **undo the operations** starting from the last one.

sparx

U585

U144

Rearrange to make r the subject of the formulae : $Q = \frac{2r - 7}{3}$ $\times 3$ 3Q = 2r - 7+7+7+73Q + 7 = 2r $\div 2$ $\frac{3Q + 7}{2} = r$

Key Words

Rearrange

Term

Inverse

Examples

ADVANCED REARRANGING EQUATIONS

