EXPAND AND SIMPLIFY BRACKETS

Key Concepts

Expanding brackets

Single: Where each term inside the bracket is multiplied by the term on the outside of the bracket.
Double: Where each term in the first bracket is multiplied by all terms in the second bracket.

Factorising expressions

Putting an expression back into brackets. To "factorise fully" means take out the HCF.

Difference of two squares

When two brackets are repeated with the exception of a sign change. All numbers in the original expression will be square numbers.

Examples

Linear expressions

Expand and simplify where appropriate

1) $7(3+a)=21+7 a$
2) $2(5+a)+3(2+a)=10+2 a+6+3 a$

$$
=5 a+16
$$

3) Factorise $9 x+18=9(x+2)$
4) Factorise $6 e^{2}-3 e=3 e(2 e-1)$

Quadratic expressions

Expand and simplify:

1) $(p+2)(2 p-1)$

$$
=2 p^{2}+4 p-p-2
$$

$$
=2 p^{2}+3 p-2
$$

2) $(p+2)^{2}$

$$
\begin{aligned}
& (p+2)(p+2) \\
= & p^{2}+2 p+2 p+4 \\
= & p^{2}+4 p+4
\end{aligned}
$$

Factorise:

3) $x^{2}-2 x-3$

$$
=(x-3)(x+1)
$$

Factorise and solve:
4) $x^{2}+4 x-5=0$

$$
(x-1)(x+5)=0
$$

Therefore the solutions are:
Either $x-1=0$

$$
x=1
$$

Or $x+5=0$
$x=-5$

sparx

1) Expand and simplify (a) 3(2-7f)
(b) $5(m-2)+6$
(c) $3(4+t)+2(5+t)$
2) Factorise
(a) $6 m+12 t$
(b) $9 t-3 p$
(c) $4 d^{2}-2 d$
3) Expand $(5 g-4)(2 g+1)$
4) (a) Factorise $x^{2}-8 x+15$
(b) Factorise and solve $x^{2}+7 x+10=0$

Product Solve
$\mathrm{S}^{-}=x 10 \mathrm{z}^{-}=x$
$(\tau-p z) p z(\supset) \quad(d-\not \subset \varepsilon) \varepsilon(q) \quad(\neq z+m) 9(e) \quad(z$
(q) $(s-x)(\varepsilon-x)(e)$

REARRANGING EQUATIONS

Key Concepts

Rearranging an equation:

Working with inverse operations to isolate a highlighted variable.

When rearranging we undo the operations starting from the last one.

Examples

Rearrange to make c the subject of the formulae :

$$
\begin{aligned}
& 2(3 a-c)=5 c+1 \\
& \text { expand } \\
& \quad 6 a-2 c=5 c+1 \\
& +2 c \quad 6 \mathrm{a}=7 c+1 \quad+2 c \\
& -1 \quad-1
\end{aligned}
$$

$$
\div 2 \quad \frac{3 Q+7}{2}=r \quad \div 2
$$

Rearrange to make a the subject of the formulae :

$$
\sqrt{\frac{a c}{b}}=d
$$

square

> square

$$
\frac{a c}{b}=d^{2}
$$

$$
\times b
$$

$$
\times b
$$

$$
a c=b d^{2}
$$

$\div c$

$$
a=\frac{b d^{2}}{c}
$$

Key Words

Rearrange
Term Inverse

1) Rearrange to make a the subject $r=\frac{5 a+3}{t}$
2) Rearrange to make m the subject $2(2 p+m)=3-5 m$
3) Rearrange to make x the subject $\sqrt{\frac{4 x}{y}}=z$

$$
\frac{t}{z^{z \kappa}}=x \quad\left(\varepsilon \quad \frac{L}{d_{\nabla}-\varepsilon}=m \quad\left(\tau \quad \frac{s}{\varepsilon-7 \iota}=p \quad(\tau: \text { SyJMSN } \forall\right.\right.
$$

ADVANCED REARRANGING EQUATIONS

Key Concepts

Rearranging an equation:

Working with inverse operations to isolate a highlighted variable.

In rearranging we undo the operations starting from the last one.

Rearrange to make m the subject of the formulae :

$$
\begin{gathered}
\mathrm{m}(r+p)=r(h-m) \\
\text { expand } \\
\mathrm{m} r+m p=r h-m r \\
+m r \\
+m r \quad+m r \\
2 m r+m p=r h \\
\text { factorise } \quad \text { factorise } \\
m(2 r+p)=r h \\
\div(2 r+p) \quad \div(2 r+p) \\
m=\frac{r h}{2 r+p}
\end{gathered}
$$

Examples

Rearrange to make v the subject
of the formulae:

$$
\frac{1}{f}+\frac{1}{u}=\frac{1}{v}
$$

$\times v$

$$
v(u+f)=f u
$$

$$
v=\frac{f u}{u+f}
$$

$$
v+\frac{f v}{u}=f
$$

$$
\times u
$$

$$
u v+f v=f u
$$

factorise factorise

Key Words
Rearrange Term
Inverse
Operation

1) Rearrange to make m the subject $m(c+d)=m+f$
2) Rearrange to make x the subject $\frac{1}{x}=\frac{1}{y}-\frac{1}{z}$
