THREE DIMENSIONAL SHAPES

Key Concept

The volume of an object is the amount of space that it occupies. It is measured in units cubed e.g. cm^{3}.

To calculate the volume of any prism we use:
area of
cross section \times length

A prism is a 3D shape which has a continuous cross-section.

The surface area of an object is the sum of the area of all of its faces. It is measured in units squared e.g. cm^{2}.

Examples

Volume $=4 \times 9 \times 2$

$$
=72 \mathrm{~cm}^{3}
$$

Area of triangle $=\frac{5 \times 7}{2}$

$$
=17.5 \mathrm{~mm}^{2}
$$

Volume $=17.5 \times 11$

$$
=192.5 \mathrm{~mm}^{3}
$$

sparx

M765, M722, M534, M661, M936

Find the volume and surface area of each of these prisms:

Surface area
Face
1)

2)

CONSTRUCTIONS

Key Concept

Line Bisector

Angle Bisector

Key Words

Construction: To draw a shape, line or angle accurately using a compass and ruler.
Loci: Set of points with the same rule.
Parallel: Two lines which never intersect.
Perpendicular: Two lines that intersect at 90°.
Bisect: Divide into two parts.
Equidistant: Equal distance.

Tip
Watch for scales.
For a scale of:
$1 \mathrm{~cm}=4 \mathrm{~km}$.
$20 \mathrm{~km}=5 \mathrm{~cm}$ $6 \mathrm{~cm}=24 \mathrm{~km}$

Examples

Shade the region that is:

- closer to A than B

Line bisector of A and B

- less than 4 cm from C

Questions

1) Draw these angles then bisect them using constructions:
a) 46°
b) 18°
c) 124°
2) Draw these lines and bisect them:
a) 6 cm
b) 12 cm

ENLARGEMENT, SIMILARITY \& CONGRUENCE

Key Concept

Properties of similar shapes:

- The corresponding angles will be the same if shapes are similar.
- Corresponding edges must remain in proportion.

sparx

U110, U630 M139

Key Words

Transformation: This means something about the shape has 'changed'. Reflection: A shape has been flipped.
Rotation: A shape has been turned.
Translation: A
movement of a shape.
Enlargement: A change in size, either bigger or smaller.
Congruent: These shapes are the same shape and same size but can be in any orientation.
Similar: Two shapes are mathematically similar if one is an enlargement of the other.

Tip

To find the centre of enlargement connect the corresponding vertices.

Examples

Enlarge shape A, scale factor 2 , centre $(0,0)$.

Scale factor 2 -

Double the distance between each vertex and the centre of enlargement.

Questions

1) A triangle has lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm . What will they be if enlarged scale factor 3.
2) Rectangle A measures 3 cm by 5 cm , B measures 15 cm by 25 cm . What is the scale factor of enlargement?
