PLOTTING AND INTERPRETTING GRAPHS

Key Concept

Substitution - This is where you replace a number with a letter

If $a=5$ and $b=2$

$a+b=$	$5+2=7$
$a-b=$	$5-2=3$
$3 a=$	$3 \times 5=15$
$a b=$	$5 \times 2=10$
$a^{2}=$	$5^{2}=25$

sparx

M932, M544,M888

Key Words

Intercept: Where two graphs cross.
Gradient: This describes the steepness of the line. y-intercept: Where the graph crosses the y axis.
Linear: A linear graph is a straight line.
Quadratic: A quadratic graph is curved, u or n shape.
$A: y=2$
B: $x=1$
C: $y=-3$
D: $y=x$

Examples

Draw the graph of $y=2 x-1$

\mathbf{X}	$-\mathbf{2}$	$-\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
\mathbf{Y}	-5	-3	-1	1	3

Notice this graph has a gradient of 2 and a y-intercept of -1 .

Parallel lines have the same gradient.

Questions

1) What are the gradient and y-intercept of:
a) $y=4 x-3$
b) $y=4+6 x$
c) $y=-5 x-3$
2) Draw the graph of $y=3 x-2$ for x values from -3 to 3 using a table.

STRAIGHT LINE GRAPHS AND EQUATION OF A LINE

Key Concepts

Coordinates in 2D are written as follows:
x is the
value that
is to the

left/right \quad| y is the |
| :---: |
| value |
| that is to |
| up/down |

Straight line graphs always

 have the equation:$$
y=m x+c
$$

m is the gradient i.e. the steepness of the graph. c is the y intercept i.e. where the graph cuts the y axis.

Parallel lines always have the same gradient.

Plot the graph of $y=2 x+1$

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
y	1	2	3

Examples of lines parallel to this graph are: $y=2 x-3$ or $y=2 x+7$

Examples

Substitute in a coordinate: $(2,7)$

$$
\begin{aligned}
& 7=(2 \times 2)+c \\
& 3=c \\
& y=2 x+3
\end{aligned}
$$

Key Words Coordinate Gradient Parallel

1) Plot the line $y=3 x-2$
2) Find the equation of the line for the attached graph.
3) State the equation of a line that would be parallel to this line.

REARRANGE AND SOLVE EQUATIONS

Key Concepts

Solving equations:

Working with inverse operations to find the value of a variable.

Rearranging an equation:
Working with inverse operations to isolate a highlighted variable.

In solving and rearranging we undo the operations starting from the last one.

Solve:

$7 p-5=3 p+3$		
$-3 p$		$-3 p$
	$4 p-5=3$	+5
+5	$4 p=8$	
$\div 2$		$\div 2$

Solve:

$$
\begin{align*}
& 5(x-3)=4(x+2) \\
& \text { expand } \quad \begin{array}{l}
\text { expand } \\
5 x-15
\end{array}=4 x+8 \\
& -4 x \quad-4 x \\
& +15 \quad x-15=8 \quad+15 \\
& x=23
\end{align*}
$$

Examples

Rearrange to make r the subject of the formulae :

$$
\begin{array}{cc}
& Q=\frac{2 r-7}{3} \\
\times 3 & \\
& 3 Q=2 r-7 \\
+7 & \\
& 3 Q+7=2 r \\
\div 2 & \\
& \frac{3 Q+7}{2}=r
\end{array}
$$

Rearrange to make c the subject of the formulae :

$$
\begin{aligned}
& 2(3 a-c)=5 c+1 \\
& \text { expand } \\
& \quad 6 a-2 c=5 c+1
\end{aligned}
$$

$$
+2 c \quad+2 c
$$

$$
6 \mathrm{a}=7 c+1
$$

$$
-1
$$

$6 a-1=7 c$
$\div 7$

Key Words
Solve
Rearrange
Term
Inverse

1) Solve $7(x+2)=5(x+4)$
2) Solve $4(2-x)=5(x-2)$
3) Rearrange to make m the subject $2(2 p+m)=3-5 m$
4) Rearrange to make x the subject $5(x-3)=y(4-3 x)$

Links
Science

$$
\frac{\kappa \varepsilon+\mathrm{s}}{\mathrm{~S}+\kappa_{t}}=x \quad\left(t \quad \frac{L}{d_{\tau}-\varepsilon}=\mathrm{u} \quad(\varepsilon \quad \tau=x \quad(\tau \quad \varepsilon=x \quad \text { (} \tau: \text { Sy } \exists \mathrm{MSN} \forall\right.
$$

EQUATIONS IN CONTEXT

Key Concepts

Algebra can be used to support us to find unknowns in a contextual problem.

We can always apply a letter to an unknown quantity, to then set up an equation.

It will often be used in area and perimeter problems and angle problems in geometry.

Solve to find the value of x when the perimeter is 42 cm .
HINT: Write on all of the lengths of
the sides.

$$
2 x+3
$$

$\begin{array}{rlr}2 x+3+2 x+3+x+x & =42 & \text { perimeter is } 42 \mathrm{~cm} \\ 9 x+6 & =42 & \\ 6 x & =36 & \text { Angles in a triangle } \\ x & =6 & \text { sum to } 180^{\circ}\end{array}$

$$
2 x-20+x+20+2 x-40=180
$$

$$
5 x-40=180
$$

$$
5 x=220
$$

$$
x=45
$$

Examples

Jane is 4 years older than Tom.
David is twice as old as Jane.
The sum of their ages is 60 .
Using algebra, find the age of each person.

Tom $=x \longrightarrow 12$
Jane $=x+4 \rightarrow 12+4=16$
David $=2 x+8 \rightarrow(2 \times 12)+8=32$

$$
\begin{array}{r}
x+x+4+2 x+8=60 \\
4 x+12=60 \\
4 x=48 \\
x=12
\end{array}
$$

Key Words
Solve
Term Inverse operation

1) If the perimeter is 40 cm . What is the length of the longest side?
2) Jane is 12 years older than Jack. Sarah is 3 years younger than Jack.
The sum of their ages is 36 .
Using algebra, find the age of each person.
