| 1 | 2 | | | | | | | | | | | 3 | 4 | 5 | 6 | 7 | 0 | |-------------------------------|-----------------------------|--------------------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------------|----------------------------------|---------------------------|-----------------------------------|---|------------------|------------------|------------------|--------------------|--------------------|------------------------| | | | | | Key | | | 1
H
hydrogen
1 | | | | | | | | | | 4
He
helium
2 | | 7
Li | 9
Be | | | ve atomi
omic sy | | | | | | | | 11
B | 12
C | 14
N | 16
O | 19
F | 20
Ne | | lithium
3 | beryllium
4 | | atomic | name
(proton |) numbe | r | | | | | | boron
5 | carbon
6 | nitrogen
7 | oxygen
8 | fluorine
9 | neon
10 | | 23
Na | 24
Mg | | | | | _ | | | | | | 27
Al | 28
Si | 31
P | 32
S | 35.5
CI | 40
Ar | | sodium
11 | magnesium
12 | | | | | | | | | | | aluminium
13 | silicon
14 | phosphorus
15 | sulfur
16 | chlorine
17 | argon
18 | | 39
K | 40
Ca | 45
Sc | 48
Ti | 51
V | 52
C r | 55
Mn | 56
Fe | 59
Co | 59
Ni | 63.5
Cu | 65
Zn | 70
Ga | 73
Ge | 75
As | 79
Se | 80
Br | 84
Kr | | potassium
19 | calcium
20 | scandium
21 | titanium
22 | vanadium
23 | chromium
24 | manganese
25 | iron
26 | cobalt
27 | nickel
28 | copper
29 | zinc
30 | gallium
31 | germanium
32 | arsenic
33 | selenium
34 | bromine
35 | krypton
36 | | 85
Rb | 88
S r | 89
Y | 91
Zr | 93
Nb | 96
Mo | [98]
Tc | 101
Ru | 103
Rh | 106
Pd | 108
Ag | 112
Cd | 115
In | 119
Sn | 122
Sb | 128
Te | 127
I | 131
Xe | | rubidium
37 | strontium
38 | yttrium
39 | zirconium
40 | niobium
41 | molybdenum
42 | technetium 43 | ruthenium
44 | rhodium
45 | palladium
46 | silver
47 | cadmium
48 | indium
49 | tin
50 | antimony
51 | tellurium
52 | iodine
53 | xenon
54 | | 133
Cs | 137
Ba | 139
La * | 178
Hf | 181
Ta | 184
W | 186
Re | 190
Os | 192
Ir | 195
Pt | 197
Au | 201
Hg | 204
TI | 207
Pb | 209
Bi | [209]
Po | [210]
At | [222]
Rn | | caesium
55 | barium
56 | lanthanum 57 | hafnium
72 | tantalum
73 | tungsten
74 | rhenium
75 | osmium
76 | iridium
77 | platinum
78 | gold
79 | mercury
80 | thallium
81 | lead
82 | bismuth
83 | polonium
84 | astatine
85 | radon
86 | | [223]
Fr
francium
87 | [226]
Ra
radium
88 | [227]
Ac*
actinium
89 | [261]
Rf
rutherfordium
104 | [262]
Db
dubnium
105 | [266]
Sg
seaborgium
106 | [264]
Bh
bohrium
107 | [277]
Hs
hassium
108 | [268]
Mt
meitnerium
109 | [271] Ds darmstadtium 110 | [272]
Rg
roentgenium
111 | Elements with atomic numbers 112 – 116 have been reported but not fully authenticated | | | | | | | $^{^{\}star}$ The Lanthanides (atomic numbers 58 – 71) and the Actinides (atomic numbers 90 – 103) have been omitted. Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number. | | | | | _ | | |---|--|-------------------------|--|---|--| | Ke | y points to learn | Key points to learn | | | | | 1. Early light microscopes | Use light and lenses. Have magnifications of 100 to 2 000 | 10.
Mitochondria | Perform respiration to release energy | | | | 2. Electron | | | Controls movement in/out of cell | | | | microscope | Magnifications of up to 2 000 000 | 12 Ribosomes | Makes proteins by protein synthesis | L | | | 3. | How much bigger an image appears
than the real object
eg Magnification of 100, image | 13Nucleus | Controls activities of cell. Contains genes to build new cells | | | | S.
Magnification | looks 100 times bigger than object | 14 Cytoplasm | Liquid where most reactions happen | L | | | | $magnification = \frac{size\ of\ image}{size\ of\ image}$ | 15 Vacuole | Sack filled with sap. Keeps cell rigid | | | | | size of object | 16 Cell wall | Made of cellulose. Supports cell | | | | 4. Resolving power | 4. Resolving Smallest size microscope can show | | Green and full of chlorophyll | | | | Poster | • Mitochondria | 18 Chlorophyll | Absorbs light for photosynthesis | | | | 5. Typical
Animal cell | Cell membrane Ribosomes | 19 Eukaryotic cells | Animal cells and plant cells. Have cell membrane, cytoplasm and nucleus | | | | | Nucleus Cytoplasm | 20 Prokaryotic cells | Bacteria. Do not have a nucleus.
Genetic material is looped | | | | | Mitochondria
Cell membrane
Ribosomes | 21 Diffusion | Particles spreading out in gas/liquid
Move from high→low concentration | | | | 6. Typical
Plant cell | Nucleus
Cytoplasm | | Dissolved substances like O ₂ and CO ₂ move in/out of cells by diffusion | B | | | | Vacuole
Cell wall
Chloroplasts | 22 Factors
affecting | Difference in concentration (concentration gradient) Temperature | | | | 7. Photo- | Reaction plants use to make | diffusion | Surface area to diffuse through | | | | synthesis | glucose from light, H ₂ O and CO ₂ | | Diffusion of water through partially permeable membrane (surface that only lets small particles through). Moves from dilute solution → more | | | | 8. Specialised animal cells | Sperm – tail to swim Nerve – carry electrical impulses Muscle – contract and relax | 23 Osmosis | | | | | | Root hair - absorb water and ions | | Moves from dilute solution → more concentrated solution | | | | Specialised
plant cells | 2. Xylem – carry water and minerals | 24 Active | Moves substances from low→high | n | | | plant cens | 3. Phloem – carry glucose to cells | transport | concentration. Needs energy | n | | | | | | | | | # Trilogy: B1 Cell structure and transport Collins Revision Guide: Cell Biology **Knowledge Organiser** #### Big picture (Biology Paper 1) #### **Background** Big or small, all organisms are made of cells. Normally too small to see without a microscope, they are the building blocks of all life: animals, plants, insects, microbes and us. #### Maths skills | Prefix | Meaning | Standard form | |-----------|-----------------|--------------------| | Mega (M) | x 1000000 | x 10 ⁶ | | kilo (k) | x 1 000 | x 10 ³ | | milli (m) | ÷ 1 000 | x 10 ⁻³ | | nano (n) | ÷ 1 000 000 000 | x 10 ⁻⁹ | | Ke | points to learn | Key points to learn | | | | |--------------------------|---|--|--|--|--| | | Process by which body cells divide. Three stages: | 9. Stem cells | Not differentiated. Can become any type of cell that is needed | | | | 1. Cell cycle | Copy: Two copies of
chromosomes and internal
cell structures Mitosis: Copies of
chromosomes move and
form two nuclei | | From embryos can become most types of human cell From adult bone marrow can form many cells like red blood cells | | | | | Split: cytoplasm and cell membranes split to make | 10. Human stem cells | May be able to help conditions like diabetes and paralysis | | | | | two identical cells | | Issues with use: | | | | 2. Mitotic cell division | | | Potential spread of virus or immune response Some people have ethical or | | | | 3. Asexual | Form of reproduction using mitotic cell division to make clone cells | | religious objections | | | | reproduction | Contains large number of genes. | | Plant stem cells. Can become any type of plant cell at any time | | | | 4. | Made of DNA molecules | 11. Meristem cells | Used to clone: | | | | Chromosome | Human body cells contain 23 pairs of chromosomes | cens | rare plants from extinction crops with desirable features | | | | 5. Genes | Instructions for a characteristic | | 1. Sperm – tail to swim | | | | 6. DNA | Molecules that make genes | Specialised
animal cells | Nerve – carry electrical impulses | | | | | Stem cells can form different | | 3. Muscle – contract and relax | | | | | types of specialised cells | | 1. Root hair - absorb water and | | | | 7. Cell differentiation | Most animal stem cells differentiate early | 13. Specialised plant cells | ions from soil 2. Xylem – carry water and minerals from roots | | | | | Many plant stem cells can differentiate at any time | praire certs | Phloem – carry glucose to cells | | | | 8. Clone | Genetically identical copy of a cell or organism | 14. Ethical objections | Related to what a person thinks is morally good or ok | | | | | | | | | | ## **Trilogy B2: Cell Division** Collins Revision Guide: Cell Biology Knowledge Organiser #### Big picture (Biology Paper 1) #### **Background** Taste buds are replaced approximately every 10days, skin cells every 14 days and your lungs every 6 weeks. How can this happen and how old are we really? #### **Additional information** | Ke | y points to learn | <u>K</u> | ey points to learn | Trilogy B3: Organisation and the digestive system | | | |---------------------------------------|--|---------------------|--|---|--|--| | 1. Specialised | 1. Sperm – tail to swim | 11. Mouth | Chews food, releases saliva | | | | | animal cells | Nerve – carry electrical impulses Muscle – contract and relax | 12. Stomach | Churns food. Partial digestion here | Collins Revision Guide: Organisation | | | | 2. Tissue | Group of similar cells | 13. Liver | Makes bile to be stored in gall bladder | Knowledge Organiser | | | | 2. 115500 | Group of tissues | 14 Pancreas | Releases enzymes in small intestine | Big picture (Biology Paper 1) | | | | 3. Organ | working together | 15. Small intestine | Majority of digestion happens here.
Makes lots of enzymes | Cells and Disease and | | | | Organ
systems | Group of organs which work together in organism | 16. Large intestine | Absorbs water | organisation bioenergetics Cell structure and Communicable | | | | 5. Digestive | A group of organs that digest | | Alkaline to neutralise stomach acid. | transport diseases | | | | system | and absorb food | 17. Bile | Added at start of small intestine. Emulsifies fat into small droplets | Cell division Preventing and treating disease | | | | 6. Digestion | Breaking large food molecules into small soluble ones Mouth | 18. Catalyst | Chemical which speeds up a reaction without being used itself | Organisation and the digestive system Non-communicable diseases | | | | 7. Human
digestive | Gullet
Stomach | 19. Enzyme | Biological catalysts
Like a specific temperature and pH | Organising animals and plants Background Have you ever wondered why the human body temperature is 37°C or why the male testes are outside the body? The answer is enzymes. They are also crucial for digestion Key points to learn | | | | | Liver
Gall-bladder | 20. Lock | Model showing how enzymes work. Substrates fit the enzyme active site, | | | | | system | Pancreas Small intestine | | then react, turning into products | | | | | | Large intestine Anus | theory | They fit Products | | | | | 8. | Types of sugars: glucose, starch, cellulose. Used for energy | 21
Metabolism | The sum of all the reactions in a cell or the body of an organism | | | | | Carbohydrate | Test: Starch turns iodine bluey black | Wietabolisiii | Enzyme breaks down protein. Made in | | | | | | Used to make enzymes, tissues and cells. Found in meat, fish, pulses, milk | 22 Protease | stomach, pancreas, small intestine | They are not alive so can't die. | | | | 9. Proteins | Test: Biuret reagent turns from | 23 Lipase | Enzyme breaks down lipids. Made in pancreas, small intestine | 25. Why you can't But they will change shape and 'denature' at the wrong temperature | | | | 10. Lipids | blue to purple Fats and oils made of fatty acids and glycerol | - 24
Amylase | Type of carbohydrase enzyme. Breaks down glucose. Made in salivary glands, pancreas, small intestine | kill an or acidity (pH) Each one has an ideal temperature and pH they work best at. | | | | <u>K</u> | ey points to learn | <u>Ke</u> | y points to learn | Trilogy B4: Organisi | | | |-----------------------------|---|--|---|--|--|--| | 1. Blood | A tissue of plasma, red blood cells, white blood cells and platelets | | Organ made of muscle that pumps blood in two loops around body | and plant
Collins Revision Guide: | | | | 2. Plasma | Yellow liquid that transports: Red and White Blood cells Waste carbon dioxide to lungs | 11. The Heart | Right (thin wall) Pulmonary artery Left (thick wall) Aorta (to body) | Knowledge Org | | | | | Urea from liver to kidneys Digested nutrients to cells | | (to lungs) Pulmonary vein (from | Cells and | | | | 3. Red
blood cells | Biconcave discs with no nucleus. Packed with red haemoglobin that carries oxygen to body cells | | (from body) Ventricles lungs) Organs for gas | organisation b | | | | 4. White blood cells | Part of the body's defence against microorganisms | 12. The Lungs | exchange. Take in O ₂ release CO ₂ | Cell division | | | | 5. Platelets | Small pieces form scabs over cuts | 12. The Lungs | Trachea | Organisation and | | | | 5.
Circulatory
system | Transports substances to/from body cells. Made up of: Blood | | Bronchi
Lung
Alveoli | the digestive system Organising | | | | | Blood vessels (arteries, veins and
capillaries) The Heart | 13. Alveoli | Thin sac-like structures within the lungs. Covered in blood vessels to help gas | animals and plants | | | | 6. Arteries | Carry blood away from your heart at high pressure | 14 Plant | exchange Leaf – carries out photosynthesis | Backgroun | | | | 7. Veins | Carry blood back to your heart. Use valves to stop reverse blood flow | 14. Plant organs | Stem – supports Roots – take in water and minerals | All living cells need glucose a respiration. Getting these in | | | | 8.
Capillaries | Network of tiny, thin vessels connecting to every individual cell. Substances diffuse in/out of blood | 15. Leaf
structure
cross-section | Epidermal tissue Xylem Palisade mesophyll Spongy Phloem mesophyll | organism is only part of the you get them to the cells, ke rid of waste products? This t | | | | 9. Coronary arteries | Blood vessels that supply heart with oxygen | 16. Transport | • Guard cells Stomata • Phloem – moves sugars | Additional info | | | | 10. | Process by which all living things get energy from glucose and oxygen | within plant | Xylem – moves water and ions Evaporation from leaf pulls water | | | | | (Aerobic)
Respiration | Glucose + Oxygen → Carbon + Water dioxide | 17.
Transpiration | through plant xylem. Affected by
temperature, humidity, wind, light | The heart was first labelled from eans the left and right side: | | | ### sing animals ıts : Organisation rganiser #### gy Paper 1) #### nd and oxygen for ngredients to the struggle. How do eep them and get topic finds out #### rmation from behind. This and right sides are reversed.